

COntent Mediator architecture for
content-aware nETworks

European Seventh Framework Project FP7-2010-ICT-248784-STREP

Deliverable D4.2
 Final Specification of

Mechanisms, Protocols and Algorithms for
Enhanced Network Platforms

The COMET Consortium

Telefónica Investigación y Desarrollo, TID, Spain
University College London, UCL, United Kingdom
University of Surrey, UniS, United Kingdom
PrimeTel PLC, PRIMETEL, Cyprus
Warsaw University of Technology, WUT, Poland
Intracom SA Telecom Solutions, INTRACOM TELECOM, Greece

© Copyright 2010, the Members of the COMET Consortium

For more information on this document or the COMET project, please contact:

Dr. Ning Wang
University of Surrey
Guildford
Surrey GU2 7XH
UK

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 2 of 76
© Copyright 2010, the Members of the COMET

Document Control

Title: Final Specification of Mechanisms, Protocols and Algorithms for Enhanced
Network Platforms

Type: Public

Editor(s): George Kamel, Ning Wang

E-mail: g.kamel@surrey.ac.uk, n.wang@surrey.ac.uk

Author(s): George Kamel, Ning Wang (UniS)

Andrzej Beben, Jaroslaw Sliwinski, Jordi Mongay Batalla,
Piotr Wisniewski, Wojciech Burakowski (WUT)

 Wei Koong Chai, Ioannis Psaras, João Taveira Araújo (UCL)

Doc ID: D4.2-2.0.docx

AMENDMENT HISTORY

Version Date Author Description/Comments

V0.1 July 29, 2011 Ning Wang Initial ToC

V0.2 October 24, 2011 George Kamel Added UniS contributions (§6 & 8)

V0.3 November 2, 2011 George Kamel Added UCL contribution (§7.2)

V0.4 November 7, 2011 George Kamel Added WUT contributions (§4& 5 and Appendix A)

V0.5 November 15, 2011 George Kamel Added WUT contribution (§3)

V0.6 November 16, 2011 George Kamel Added UCL contributions (§9 & 7.1 and Appendix B)

V0.7 November 17, 2011 Ning Wang Edited Conclusions (§10)

V0.8 November 17, 2011 George Kamel Edited Executive Summary and Introduction (§1 & 2)

V1.0 November 17, 2011 George Kamel Final version ready for submission

V1.01 November 18, 2011 George Kamel Corrected problem with typesetting of equations in §9 and App. B

V1.1 December 6, 2011 George Kamel Added amended UCL contributions (§7.1 and §9)

V1.2 December 14, 2011 Ioannis Psaras Reviewed and amended whole deliverable

V2.0 December 19, 2011 George Kamel Final amended version ready for submission

Legal Notices
The information in this document is subject to change without notice.
The Members of the COMET Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the COMET Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 3 of 76
© Copyright 2010, the Members of the COMET

Table of Contents

1 Executive Summary 6

2 Introduction 7

3 Quality of Service Engineering for Content Delivery 10

3.1 COMET Classes of Service 11

3.2 Content delivery in different network environments 13

3.2.1 Best effort network (Current Internet) 13

3.2.2 Multi-service network environments 13

4 Routing-awareness in the COMET System 16

4.1 RAE interfaces 18

4.1.1 Configuration file 18

4.1.2 RAE to RAE interface 19

4.1.3 RAE to CME interface 21

4.2 Consideration on RAE deployment 21

5 Stateless Content-aware Forwarding 24

5.1 COMET header 25

5.2 Packet processing 26

6 Stateful Content-aware Forwarding 28

6.1 Content Delivery Entities 28

6.2 Content Delivery Path Configuration during Content Resolution 29

6.3 Content forwarding 31

6.4 Inter-domain Content Delivery Route Optimisation 32

7 Content Caching 34

7.1 Probabilistic In-Network Caching 34

7.1.1 Background and Motivation 34

7.1.2 Building ProbCache 36

7.1.3 Performance Evaluation 39

7.1.4 Related Work 42

7.2 Centrality-based In-network Caching 43

7.2.1 Background and Motivation 43

7.2.2 Centrality-based Caching Scheme 43

7.2.3 Scalable Realisation of Betweenness Caching Scheme 45

7.2.4 Conclusions 46

8 Content-centric Mobility Support 48

8.1 Content-Aware Mobility Support Entities 48

8.2 Mobility- and Content-Aware Scheduling 49

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 4 of 76
© Copyright 2010, the Members of the COMET

8.3 Handover Mechanisms 50

9 Congestion-aware Content Traffic Load-balancing 53

9.1 PREFLEX overview 54

9.1.1 Loss Exposure 54

9.1.2 Path Re-Feedback 55

9.2 Balancing congestion 56

9.3 Evaluation 57

9.3.1 Methodology 58

9.3.2 Varying bottleneck distribution 59

10 Summary and Conclusions 62

11 References 64

12 Abbreviations 67

13 Acknowledgements 69

14 Appendix A: Exemplary configuration file for RAE 70

14.1 Script example 70

15 Appendix B: Flow Balancing according to Expected Path Loss 75

15.1 Loss balancing 75

15.2 Balancing between conservative and loss-driven modes 76

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 5 of 76
© Copyright 2010, the Members of the COMET

(This page is left blank intentionally.)

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 6 of 76
© Copyright 2010, the Members of the COMET

1 Executive Summary

This deliverable presents the final specifications of the mechanisms, protocols and algorithms
associated with content forwarding plane functionalities for end-to-end content delivery in multi-
domain networks. This supersedes the corresponding interim specifications given in COMET
Deliverable D4.1 [1], and complements the mechanisms, protocols and algorithms relating to
content mediation specified in COMET Deliverable 3.2 [2].

Two main approaches to content-aware forwarding are proposed: an evolutionary approach and a
revolutionary approach. The evolutionary approach, which is stateless in nature, aims at fast,
incremental deployment of enhanced networking techniques for efficient Internet-wide content
delivery without fundamentally changing the underlying legacy systems. On the other hand, the
revolutionary approach, which is state-based, supports long-term evolution of future Internet
and clean-slate design of future content-centric network architectures, which do not necessarily
rely on existing network platforms. Both the stateless and stateful approaches are specified in
Sections 5 and 6, respectively, in terms of both the architecture of the various content-forwarding-
related entities, and the interaction between these entities.

Supporting both approaches are a number of ‘core’ and ‘advanced’ features. The first of these core
features is quality-of-service support, which is presented in Section 3. The COMET approach
for Quality of Service (QoS) engineering assumes that content is delivered using dedicated paths
(content delivery paths), which support COMET Classes of Service (CoS). We define the global
COMET CoS that can be used for supporting differentiated traffic treatment in end-to-end content
delivery, and we also consider offline and long timescale network provisioning operations for
preparing for the actual content delivery.

The way in which information about different network paths is disseminated to the COMET
content delivery decision making engine is another important issue that is addressed. Towards this
end, we specify a number of mechanisms and algorithms in Section 4 to support the routing
awareness process. This process is responsible for gathering information about inter-domain
paths that are used for content delivery. We specify the format of messages exchanged between
routing awareness entities (RAE), basic operations performed by RAEs as well as the
considerations about different strategies of RAE deployment.

One of the main benefits of information-/content-centric networks is the ubiquitous in-network
caching which can significantly increase the efficiency of the network and reduce content delivery
latency. In Section 7, we propose two novel schemes to support efficient content caching within
COMET. The first scheme, presented in Section 7.1, is a probabilistic in-network caching scheme
(ProbCache), which approximates the caching capability of a path and then caches contents
probabilistically along the path. The second scheme, presented in Section 7.2, is a centrality-based
caching scheme, where content is cached only at specific high centrality node(s) along the content
delivery path. We show that such a scheme outperforms the standard ubiquitous caching.

Having specified the content resolution and delivery processes for fixed clients in Sections 5 and 6,
we turn our attention to the provision of content-aware mobility support mechanisms for
COMET in Section 8. Despite the inherent ability of information- or content-centric networks to
support user mobility (albeit inefficiently), we observe that there is still space for additional
mobility support mechanisms that aim to keep handover latency to a minimum. Therefore, Section
8 addresses mobility at both the system level, in the form of handover support, and mobility- and
content-aware scheduling of content at the wireless interface, respectively.

Finally, in Section 9, we question the validity of metrics such as hop-count used to measure
network congestion. We find that, sometimes, in real networks, shorter paths (in terms of
autonomous systems, for instance) induce longer delays. Therefore, we design a loss-based,
congestion-aware content traffic load-balancing algorithm, which we call PREFLEX (Path
RE-Feedback with Loss EXposure) and assess its operational properties. The performance of our
approach is evaluated by simulation and is shown to perform well in a variety of circumstances.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 7 of 76
© Copyright 2010, the Members of the COMET

2 Introduction

The COntent Mediator architecture for content-aware NEtworks (COMET) project aims to define a
novel content-oriented Internet architecture that will radically simplify content access, and will
support content distribution in a network-aware fashion. Towards this objective, this deliverable
specifies the mechanisms, protocols and algorithms to enhance network platforms to support
content delivery in a content-aware manner. This supersedes the interim specifications given in
COMET Deliverable D4.1 [1], and complements the mechanisms, protocols and algorithms relating
to content mediation specified in COMET Deliverable 3.2 [2].

Two main approaches to content-aware forwarding are proposed: an evolutionary approach and a
revolutionary approach. On one hand, evolutionary approaches aim at fast and incremental
deployment of enhanced networking techniques for efficient Internet-wide content delivery
without fundamentally changing the underlying legacy systems. In this case, existing platforms,
such as DNS-like content resolution and IP based addressing, routing, and forwarding
architectures are considered. On the other hand, in order to support long-term evolution of future
Internet, clean-slate design of future information-/content-centric network architectures,
mechanisms and protocols are also investigated, which do not necessarily rely on existing network
platforms. This deliverable will present the final specification of our proposed approaches in both
categories, namely the former, stateless approach, and the latter, stateful approach.

Both stateless and stateful approaches are supported by a number of common features, namely,
quality-of-service provisioning, routing-awareness, congestion-avoidance through load-balancing,
network-based content caching, and support for mobile COMET users. Some of these features are
new to this project, such as the loss-aware traffic load-balancing and mobility support, and are
presented here for the first time. Other features such caching support has been significantly
extended from what was presented in the D4.1, for example proposing techniques for limiting the
number of nodes at which content is cached to reduce redundancy and, in turn, increase overall
network performance. This rest of this section will briefly introduce both approaches to content
forwarding, as well as each of these common features.

The specifications of the two main approaches to content forwarding, stateless and stateful, are
presented in Sections 5 and 6, respectively. The stateless content delivery process is related with
the decoupled content resolution process described in Section 3 in D3.2 [2]. This approach
assumes that Content-Aware Forwarding Entities (CAFEs) forward content based on information
about the selected path that is stored in the COMET header attached to the original packet
containing bits of content. As a result, CAFEs maintain only the neighbourhood (local)
information, i.e., how to forward packet to the next CAFE instead of keeping routing table with all
prefixes. In addition, the stateless forwarding allows the Content Mediation Plane (CMP) to select
adequate path for each consumption request (in a manner similar to source routing). The stateless
content delivery process covers three main actions: (1) collecting of forwarding information for
selected paths, (2) preparation for content delivery and (3) content forwarding. The collecting
action is performed at semi-long time scale, i.e., when a new routing path is used. The resulting
configuration is valid for long durations (in the order of hours or days) and may be used by
multiple content transfers as long as the selected path is the same. The result of collecting is the list
of forwarding rules required to forward content along the selected path. The preparation for
content delivery is invoked for each consumption request. This action is responsible for
configuration of edge CAFEs and assigning appropriate COMET header containing the list of
forwarding rules. Finally, content forwarding relates directly to packet handling in CAFEs.

Concerning the revolutionary/radical option, we have specified a stateful content delivery process
presented in Section 6, which is to be tied to the coupled content resolution approach specified in
Section 4 in D3.2 [2]. According to this approach, specific content states are required to be
maintained at involved CAFEs as the ingress and egress nodes of individual domains. This type of
state maintenance is similar to the principle of IP multicast, but there are some key differences. A
fundamental one is that the state configuration is effectively done by the local Content Resolution
and Mediation Entity (CRME) in the CMP. More specifically, during the content resolution phase,

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 8 of 76
© Copyright 2010, the Members of the COMET

once the CRME has determined to forward the content resolution request to its counterpart in the
next hop domain towards the targeted source, it is responsible for configuring the corresponding
CAFEs in its local domain for preparing for the actual delivery of the content flow back to the
consumer. Due to the fact that the content resolution and delivery processes are tightly coupled,
the actual domain-level delivery path is effectively the reverse direction of the corresponding
resolution path.

As previously mentioned, both approaches to content forwarding are supported by a number of
common features. The first of these is quality-of-service support, which is presented in Section 3.
The COMET approach for Quality of Service (QoS) engineering assumes that content is delivered
using dedicated paths (content delivery paths), which support COMET Classes of Service (CoS). We
first define in Section 3 the global COMET Class of Services (CoS) that can be used for supporting
differentiated traffic treatment in end-to-end content delivery. The way in which end-to-end CoS
can be achieved through the mapping of specific internal QoS capabilities within participating ISP
networks is detailed in this section. On the other hand, we also consider offline and long timescale
network provisioning operations for preparing for the actual content delivery; specifically, the
provisioning of (multi-paths) inter-domain routes across domains.

The way in which information about different network paths is disseminated to the COMET
content delivery decision making engine is another important issue addressed in this deliverable.
Towards this end, we specify a number of mechanisms and algorithms in Section 4 to support the
routing awareness process. This process is responsible for gathering information about inter-
domain paths that are used for content delivery. In principle, this process is similar to inter-
domain routing but we introduce two main enhancements. First, the routing awareness process
aims to find inter-domain paths that optimise delivery of content. Therefore, this process should
match transfer requirements of specific type of content with the QoS capabilities offered by
domains. The second enhancement corresponds to propagation and maintenance of multiple paths
between the source and destination domain. This feature allows for applying smart traffic
engineering algorithms, load balancing in the network as well as improving reliability of content
delivery. In Section 4 we specify the format of messages exchanged between routing awareness
entities (RAE), basic operations performed by RAEs as well as the considerations about different
strategies of RAE deployment.

One of the main benefits of information-centric networks is the ubiquitous in-network caching
which has the potential to increase the efficiency of the network and reduce content delivery
latency, avoiding the need to obtain content from the source each time it is requested. In Section 7,
we depart from the Content-Centric Networking (CCN) in-network caching scheme used by Van
Jacobson et al. [3], in which content is wastefully cached at all nodes along a content delivery path,
and propose two novel schemes to support more efficient content caching. The first scheme,
presented in Section 7.1, is a probabilistic in-network caching scheme (ProbCache), which
approximates the caching capacity of a path and then caches contents probabilistically along the
path in order to: i) leave space for other flows on the same path to cache their contents, and ii)
fairly multiplex contents in caches along the path from the server to the client. The second scheme,
presented in Section 7.2, is a centrality-based caching scheme, where content is cached only at
specific high centrality node(s) along the content delivery path. We show that such a scheme
outperforms the standard ubiquitous caching (i.e., where content is cached at each and every node
it traverses along the delivery path).

Having specified the content resolution and delivery processes for fixed clients in Sections 5 and 6,
we turn our attention to the provision of mobility support mechanisms for COMET in Section 8. In
general, information-centric networks (ICNs) are inherently able to offer better support for mobile
users compared to host-centric communication models. This can be attributed to the network’s
awareness of content, which mitigates the need for the content server or a mobility agent located
away from the client to be updated each time the client’s IP address changes as a result of handover
between routers. Instead, communication paths are simply ‘healed’, such that only the changed
part of the communication path is re-established after a client handover. Nevertheless, despite
ICNs’ inherent mobility support, it is possible improve this feature by designing additional mobility
support mechanisms that aim to keep to a minimum the disruptive effect of handovers. Therefore,

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 9 of 76
© Copyright 2010, the Members of the COMET

Section 8 addresses mobility at both the system and link levels. At the system level, both intra- and
inter-domain handover mechanisms are specified to support within the coupled approach both
user context transfer between CAFEs and smooth switching of changed communication paths. At
the link level, we propose a number of novel ideas to support mobility- and content-aware
scheduling of content at the wireless interface.

In D3.2 [2], a number of strategies to select the best path available from a given client to a given
server were introduced and evaluated. These strategies included combinations of paths and servers
based on the number of hops and the load on the servers. Although the results presented in D3.2
give a good insight on the most appropriate selection strategies, depending on the topology and the
available servers, we have conducted measurements from real networks to see whether our
assumptions and predictions hold. In particular, we used non-anonymised traces of inter-domain
traffic, provided by the Japanese academic network, which provides connectivity for academic and
research institutions in the country. In Section 9, we question the validity of metrics such as the
number of hops (in terms of IP routers, or ASes). We find that, sometimes, in real networks,
shorter paths (in terms of ASes, for instance) induce longer delays. Therefore, we design a loss-
based, congestion-aware traffic balancing algorithm, which we call PREFLEX (Path RE-Feedback
with Loss EXposure) and assess its operational properties. Equations are derived for the automatic
tuning of the time scale and traffic split at a decision point. The algorithms described in this
document allow the load balancer to self-tune to the network conditions. The calculations are
simple and do not place a large burden on a router where the algorithm would be implemented.
The algorithm is evaluated by simulation using ns-3 and is shown to perform well in a variety of
circumstances. The resulting adaptive, end-to-end load balancing architecture provides the
necessary framework to meet the increasing demands of users while simultaneously offering edge
networks more fine-grained control at far shorter timescales.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 10 of 76
© Copyright 2010, the Members of the COMET

3 Quality of Service Engineering for Content Delivery

The COMET approach for Quality of Service (QoS) engineering assumes that content is delivered
using dedicated paths (content delivery paths), which support COMET Classes of Service (CoS).
The COMET CoS assures adequate transfer of given type of content in each domain between server
and client. The content delivery paths are organized and maintained by routing awareness
processes performed by the Routing Awareness Entities (RAE). The RAE is responsible for
matching the content delivery requirements with the transfer capabilities offered by particular
domains. Figure 1 illustrates the idea of the investigated approach.

The domains usually differ in offered transfer capabilities, i.e., they support different intra-domain
CoSs. In order to perform coherent transfer of the content from the server to the client, each
domain should perform a mapping between COMET CoSs and the transfer capabilities that it
offers. This mapping should be performed as a part of RAE configuration based on the domain
provisioning information, e.g., domain owner policies, available resources and transfer capabilities.
The specification of the RAE is provided in chapter 4.

Other important elements enabling the QoS engineering in COMET are the Content Aware
Forwarding Entities (CAFEs). CAFEs handle the packets transferring the content by using a
dedicated COMET header appended to the packets as shown in Figure 2. This allows the COMET
system to take advantage of three main features: first, CAFEs may enforce the content delivery
paths regardless of existing routing. This feature not only relaxes constraints of standard routing
protocols where single shortest path is used (e.g., BGP), but it also allows to use content delivery
path on demand for particular content consumption (using previously established paths). Second,
CAFEs perform adequate packet classification/marking for mapping between COMET CoSs into
transfer capabilities used in particular domain. Although this function seems to be simple, it is
essential to provide end-to-end QoS across the multi-domain network. Both RAEs and CAFEs
allow the creation of an overlay network for content delivery, which in turn enables the setting of
specific interconnection agreements for content delivery, independent of those currently used for
Internet traffic, with autonomous systems potentially located at hop distances higher than one AS.

Figure 1: Approach for creating content delivery paths

Routing Awareness Process

Domain CDomain BDomain A

Content

Client Content server

Content delivery paths supporting COMET Classes of Service

Domain A transfer capabilities Domain B transfer capabilities Domain C transfer capabilities

Provisioning

Information

Provisioning

Information

Provisioning

Information

Content delivery

requirements

RAE RAE RAE
NLRI exchange NLRI exchange

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 11 of 76
© Copyright 2010, the Members of the COMET

Figure 2: Approach for enforcement of content delivery paths

Briefly, even though the content delivery in COMET relies on transfer capabilities provided by
particular domains, the RAEs and CAFEs allow the system to apply specific traffic control and
engineering algorithms in order to optimise content delivery paths. Thanks to them, the COMET
can improve both the quality perceived by content consumers and the efficiency of resource
utilisation (network and server resources).

3.1 COMET Classes of Service

The COMET approach for delivering the content follows the commonly recognised approach of
end-to-end Classes of Service (e2e CoS) that is widely investigated for providing QoS in a multi-
domain network, see [4][5][6]. The e2e CoS defines the transfer capabilities required to meet QoS
requirements of given type of traffic. The e2e CoSs are defined in a global scope, and then they are
mapped into appropriate intra-domain network CoSs offered by particular domains. These intra-
domain CoSs have only local meaning, because particular domains may differ in offered intra-
domain CoSs and the assured QoS level, depending on service provider policies, technical
constraints or business relations.

In the COMET project, we follow the end-to-end CoS approach with two main extensions. First, we
define the end-to-end CoS, called COMET CoS, that are strictly oriented to content delivery. They
are designed taking into account characteristics of content types considered in COMET. Similar to
end-to-end CoS, the COMET CoSs are defined in the end-to-end scope and they should be properly
mapped into intra-domain CoSs offered by a particular domain. The second extension is the
COMET specific routing awareness function, which allows to fix inter-domain routing paths taking
into account requirements of COMET CoS and transfer capabilities of intra-domain CoS offered by
particular domain. Thanks to routing awareness function, we assure wide visibility of COMET CoS.
The COMET CoS are used in several COMET processes. First, each content is assigned to COMET
CoS during content registration based on required service level. Second, COMET CoS are used in
routing awareness process to build content delivery paths based on intra-domains CoS. Finally, we
use COMET CoS during path configuration process to assign appropriate forwarding rules to
delivered content, e.g. marking, queuing.

We start the design of COMET CoS from the analysis of content characteristics. First of all, we
classify the content considered in COMET in content types based on the content nature and the
requirements for content transfer. Basically, we distinguish two content types that are: live and
pre-recorded.

The main feature of the live content is that content producer prepares the content in an on-line
manner, i.e., the content is captured, encoded and transmitted in a scale of fraction of a second. As

Content Forwarding Plane

Client

Content

Content server

Content

Content server

CAFE

CAFE

CAFE

CAFE

IP routing path

COMET routing

path

Content Header

ContentCH

ContentCH

ContentCH
ContentCH

CH

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 12 of 76
© Copyright 2010, the Members of the COMET

a result, we do not know the size of the content, although the duration can be approximated. Good
examples of this content type are live transmissions of sport or cultural events.

Even though we cannot accurately describe the duration or size of the content, the important
characteristic is the setting of the codec. This allows for estimation of traffic profile emitted by
servers, where we distinguish 2 main types of encoding: i) constant bit rate encoding and
ii) variable bit rate encoding. From the perceptive point of view the variable encoding offers better
QoS (better quality at lower bit rate), while at the same time it generates bursts of data that may
temporarily overload the network. As a result the buffers may overflow and encoded stream may be
damaged.

Notice that the content server usually streams the content for multiple clients at the same time.
This naturally brings into attention the point-to-multipoint capabilities, e.g., multicast. While there
are several overlay solutions that uses TCP transport protocol (e.g. Octoshape), the transmission
over UDP is more natural. In addition, transmission over UDP is able to exploit natural features of
multicast in IP networks. On the other hand, it requires more stringent transfer capabilities in the
network, e.g. lower packets losses.

The pre-recorded content is prepared in an off-line manner, i.e., the processing of content is
completed and then it is ready for transfer. All properties of the content and its meta-information
are known beforehand. Typical examples of such content are movies or songs.

While both duration and bit rate requirements are known, the emitted traffic profile depends on
the used transport protocol. The UDP protocol reduces the load at server side and simplifies the
synchronization at the receiver. The problem with traffic bursts remains the same as for live traffic.
Although using TCP protocol filters the bursts produced by application and in addition, allows for
retransmissions of lost packets, it is often limited by, so called, bandwidth delay product which
bounds the maximum achievable throughput when network delay becomes noticeable. This is
important limitation when the content uses high resolution fidelity and thus requires large
amounts of bandwidth.

The pre-recorded content is usually available in multiple network locations, which improves
scalability of traffic sources and moreover it allows for load balancing among the content sources.

The COMET CoS take into account both types of content and relate them with potential transfer
capabilities offered by particular domains. We consider 3 COMET CoS:

 Premium (PR) CoS – it offers guaranteed services by exploiting Service Level
Specification agreements between peering domains. The guarantees define the service at the
level of packet transfer characteristics, i.e., packet loss ratio, packet transfer delay metrics
and guaranteed throughput. Note that for achieving absolute QoS guarantees, the domains
may employ resource and admission control functions.

 Better than Best Effort (BTBE) CoS – it offers the transfer of content over the COMET
controlled paths in the network. This requires that the forwarding over a path is enforced by
CAFEs. While this CoS does not introduce any kind of guarantees, it improves the ability to
control the load over the paths in the network. Consequently, we enable new mechanism for
traffic engineering that can be used for relative differentiation of the service. This service is
intended for media-delivery applications, which traffic may be transferred without QoS
guarantees, e.g., P2P based real-time applications. This CoS may be used also for delivery of
live or pre-recorded content, but in this case without QoS guarantees. This may happen
when domain cannot provide Premium CoS for particular content delivery.

 Best Effort (BE) CoS – it offers the transfer of content in best effort way using existing
routing paths in the network.

Table 1 summarizes main features of considered COMET CoS.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 13 of 76
© Copyright 2010, the Members of the COMET

 Best Effort Better than Best Effort Premium CoS

Requires CAFE No Yes Yes

Ability to use COMET
routing awareness
information

No Yes Yes

Relative QoS

(with traffic engineering)

No Yes Yes

Absolute QoS

(with admission control)

No No Yes

Specialization for live and
pre-recorded content

No No Yes

Multicast feature No Optional Optional

Traffic description None Optional Double token bucket

Table 1: Characteristics of COMET CoS

3.2 Content delivery in different network environments

3.2.1 Best effort network (Current Internet)

Current Internet offers only the best effort service, which does not provide QoS capabilities. As a
consequence, the COMET system deployed over current Internet can support only two types of
content delivery paths: BE and BTBE paths. The BE paths follow the paths available in the
Internet, so once the server is selected, the content is delivered in the same way as in the current
Internet. On the other hand, the BTBE paths are engineered and configured by the COMET system.
Thanks to traffic handling mechanisms in CAFEs and traffic engineering algorithms in PMF, the
BTBE paths may improve the content delivery when comparing with BE paths.

Obviously, content delivery in the current Internet can benefit from other features offered by
COMET, e.g. anycast (server selection taking into account the server load).

3.2.2 Multi-service network environments

Given the existing paradigms in providing multi-service network environments, such as
Differentiated Services (DiffServ) in packet forwarding, as well as new routing and path selection
techniques for enabling service differentiation, we have investigated how the COMET content
delivery platform can be gracefully built on top of these existing infrastructures, if necessary with
lightweight adaptations or extensions. In addition to enabling service differentiation, it is also
essential to consider overall network resource optimisation objectives in order to achieve end-to-
end multi-service aware content delivery with cost-efficient network support. According to the
common practice, Service Level Specifications (SLSs) are needed between the customer side and
the network side which is responsible for specifying QoS parameters (such as delay and packet loss
bounds). In case of end-to-end QoS across multiple autonomous networks, provider-level SLSs can
be also established in order to “bind” the QoS capability of individual ISP networks. The outcome
of such provider SLSs will also be used to drive the underlying (inter-domain) routing
configuration for QoS enforcement. As far as the COMET paradigm is concerned, such operations
are performed in an offline manner. When the content delivery services have been activated, the
pre-provisioned paths (possibly multiple end-to-end paths between each source-destination
network pair, each corresponding to a specific QoS level) can be dynamically used for content
delivery according to dynamic network conditions.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 14 of 76
© Copyright 2010, the Members of the COMET

In section 3.1 we have defined three types of Class of Services (CoS) in the context of the COMET
based approach, namely Premium (PR), Better-than-best-effort (BTBE) and Best effort (BE). Now
the key issue is how these COMET-defined CoS can be efficiently mapped onto the underlying
differentiated network capabilities. In the data forwarding plane, it is natural to use dedicated
DiffServ code points (DSCP) to enforce specific packet forwarding treatments inside the network,
as is the common practice today. It is important to note that it is up to individual ISP’s options to
define the mapping between DSCP values and provisioned QoS classes inside their own networks,
although the identification of the COMET CoSs should be globally unique, i.e. recognised by all
COMET-participating ISPs. As such, another level of code point mapping is necessary when
COMET media flows are being delivered across network boundaries – the globally recognised
COMET code point carried by the content packets should be specifically marked to the locally
understandable DSCP values when they are injected into the next hop domain. As far as routing is
concerned, as indicated previously, each COMET CoS is supported by dedicated offline path
provisioning processes in order to enable service differentiation. Even within one single COMET
CoS, it is also possible to provision multiple equivalent content delivery paths so that content
packets can be adaptively transmitted across multiple paths, depending on the path
quality/conditions in dynamic environments. Fundamentally, the offline engineering of the content
delivery capability across multiple COMET CoSs is performed individually CoS by CoS without
interference with each other. Certainly, more advanced approaches can be envisioned for more
advanced usage of network resources, for instance bandwidth sharing or path sharing between
different COMET CoSs. Such features will be potentially investigated in the project at a later stage.

The handling of the packets by CAFEs allows us to map the COMET CoSs into different
technologies used for content delivery. In Table 2, Table 3, and Table 4, we present the exemplary
mappings for selected network technologies.

COMET CoS Priority Code Point
(PCP) value

Notes

Premium 3 (Critical Applications) 1) Live content should use PCP value 4;

2) Pre-recorded content should use PCP value 3;

3) Resource and admission control function
should be applied before accepting the content
delivery.

4 (Video)

Better than
Best Effort

2 (Excellent Effort) No SLA type resource assurance – other traffic
control mechanisms may apply. This service is
intended for media-delivery applications which
do not require strict QoS guarantees, e.g., P2P.

Best Effort 0 (Best Effort) No resource assurance

Table 2: Mapping of COMET CoSs into Ethernet priorities [4]

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 15 of 76
© Copyright 2010, the Members of the COMET

COMET
CoS

Service Class name DSCP name
and value

Notes

Premium Broadcast Video CS3 (011000) 1) Live content should use CS3;

2) Pre-recorded content should use
AF3x;

3) Resource and admission control
function should be applied before
accepting the content delivery.

Multimedia
Streaming

AF31 (011010)

AF32
(011100)

AF33 (011110)

Better
than Best
Effort

High-throughput
Data

AF11 (001010)

AF12
(001100)

AF13 (001110)

No SLA type resource assurance –
other traffic control mechanisms may
apply. This service is intended for
media-delivery applications which do
not require strict QoS guarantees, e.g.
P2P.

Best Effort Standard DF (000000) No resource assurance

Table 3 Mapping of COMET CoSs into DiffServ Service Classes [7]

COMET
CoS

Treatment
Aggregate (TA)

DSCP name
and value

MPLS
EXP
value

Notes

Premium Real Time CS3 (011000) 100 1) Live content should use Real
Time TA;

2) Pre-recorded content should
use Assured Elastic TA;

3) Resource and admission
control function should be
applied before accepting the
content delivery.

Assured
Elastic

AF31 (011010)

AF32
(011100)

AF33 (011110)

010

011

Better
than Best
Effort

Assured
Elastic

AF11
(001010)

AF12
(001100)

AF13 (001110)

010

011

1) No SLA type resource
assurance; 2) Domain supporting
both PR and BTBE CoSes must
guarantee no overlaps between
010 and 011 MPLS EXP values.

Best Effort Elastic DF 000 No resource assurance

Table 4 Mapping of COMET CoSs into DiffServ Treatment Aggregates with MPLS option [8]

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 16 of 76
© Copyright 2010, the Members of the COMET

4 Routing-awareness in the COMET System

The objective of routing awareness process is to find content delivery paths. The routing awareness
is an off-line process performed in long time scale. It reacts to changes in inter-domain network
reachability or re-provisioning of domains. The routing awareness is performed by Routing
Awareness Entities (RAE), which should be located in every COMET domain a presented on Figure
3. Comparing to standard inter-domain routing protocol, like BGP-4 [5], the RAE offers two new
features: (1) multi-criteria (QoS) routing which allows RAE to build routing paths taking into
account the requirements of COMET CoSs and (2) multipath routing as RAE builds a set of routes
going towards a given prefix. These features provide COMET more information about the network
and inter-domain routing paths, which enable COMET to deliver content with respect to QoS
requirements as well as improve utilisation of network resources, e.g. by load balancing. The RAE
provides information about discovered routes and their properties to the Path Storage component
of CME [1]. This information is used by decision maker during content resolution process to select
the best path for content consumption.

Each RAE requires information about its domain, which among others covers: Autonomous System
(AS) number, available network prefixes, IP addresses of peering RAEs, as well as supported
COMET CoSs and values of their QoS parameters as maximum IP Packet Transfer Delay (IPTD),
maximum IP Packet Loss Ratio (IPLR), maximum bandwidth (BW) for single content consumption
assured between any ingress and egress points of its domain. Note, that values of QoS parameters
should be valid in long term constituting an upper bound for actual values. This information should
be provided by Domain Management System based on domain configuration, domain provisioning
as well as SLA agreements between peering domains. In COMET prototype, this information would
be provided by RAE configuration file. Then, the RAE exchanges UPDATE or WITHDRAW
messages with other RAEs located in peering domains to build content delivery routes. Each
content delivery route is characterised by the list of AS numbers, supported COMET CoS and
aggregated values of QoS parameters. The QoS parameters are calculated from the egress CAFE of
a source domain towards a given prefix. Moreover, RAE exchanges KEEP-ALIVE messages
between peers in order to detect failures of peering RAEs. Whenever any change is detected, i.e.
peer failure or domain re-provisioning, routing information is updated and propagated to the
entire network.

Figure 3: Routing awareness and provisioning

Content Forwarding Plane

Content Mediation Plane

Access network with

content server

Access network

with client

Domain A

Domain B

Domain D

Domain C

RAE

RAE

RAE

RAE

Provisioning
information

NLRI exchange

NLRI exchange

NLRI exchange

NLRI exchange

Provisioning
information

Provisioning
information

Provisioning
information

NLRI exchange

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 17 of 76
© Copyright 2010, the Members of the COMET

Each RAE maintains two routing information tables that are named: Known Routes Table (KRT)
and Preferred Routes Table (PRT).The former stores information about routes that have been
advertised by peering RAE, while the latter stores the routes preferred by the domain. The RAE
uses a route ranking algorithm to evaluate all known routes and to select a set of preferred routes.
In multi-path approach, the route ranking algorithm selects a number of preferred routes going
towards the same network prefix.

Let’s focus now on RAE operations, that is, the actions performed by the RAE after reception of
UPDATE, WITHDRAW or KEEP-ALLIVE messages:

1. When the RAE receives UPDATE message from peering domain:
a. It performs sanity check of UPDATE message to remove routes that contain its own

AS number. This process allows us to avoid routing loops.
b. It updates properties of the routes received in UPDATE message, i.e., path length,

list of domains, aggregated QoS parameters, with values corresponding to its
domain and then it stores routes in KRT. It is worth to mention that this process
may also remove the previously advertised routes, when received UPDATE has
fewer routes than the previous one.

c. It invokes the route ranking algorithm to select the new preferred routes and
prepare new PRT.

d. If new PRT is identical to the old one, the process is finalized. Otherwise, the RAE
updates PRT and sends UPDATE message with the currently preferred routes to its
peers. Then, the process is finalized.

2. When the RAE receives WITHDRAW message from peering domain:
a. It removes routes from the KRT.
b. It invokes the route ranking algorithm to prepare new PRT.
c. If new PRT is identical to the old one, the process is finalized. Otherwise, the RAE

updates PRT and sends WITHDRAW message to its peers with the set of routes,
which should be removed. Then, the process is finalized.

3. When the RAE receives KEEP-ALIVE message from peering domain:
a. It restarts keep_alive timeout.

Note that when keep_alive timer expires, the RAE treats peer as unavailable and:

a. It removes all routes from the KRT that were received from this peer.
b. It invokes the route ranking algorithm to prepare new PRT.
c. If new PRT is identical to the old one, the process is finalized. Otherwise, the RAE

updates PRT and sends WITHDRAW message to its peers with the set of routes,
which should be removed. Then, the process is finalized.

Route ranking algorithm

The objective of the route ranking algorithm is to select the set of preferred routes from the list of
known routes stored in the KRT. Note that in inter-domain network, there may be number of
feasible routes that meet the requirements of COMET CoSs and have similar properties, e.g.,
similar length of the routes, similar QoS parameters. The route ranking algorithm evaluates the
feasible routes using specific cost function, cost_f(.). The latest studies related to multi-criteria
routing presented in [9], [10] and [11] pointed out that the most effective cost functions are
nonlinear, strict monotonic and convex functions. In our approach we consider two cost functions.

Option 1:

 ,

where parameter qk is k-th parameter characterising the route, rk is reservation level for kth
parameter, and ak is aspiration level for k-th parameter.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 18 of 76
© Copyright 2010, the Members of the COMET

Option 2:

 ,

where parameter qk is k-th parameter characterising the route, rk is reservation level (constraint)
for k-th parameter, and ak is aspiration level for k-th parameter.

Option 1 uses weighted sum of inverse functions related to each parameter. This function assures
that the cost of path significantly increases when a given decision variable becomes close to the
reservation level. This feature allows to avoid paths that are close to the limits. The second option
exploits the multi-criteria decision algorithm with the reference point (similar algorithm is used in
COMET decision process). This algorithm ranks paths based on decision variable, which has the
worst value. The effectiveness of considered cost functions will be evaluated in simulation
experiments.

The cost function ranks available routes. The set of N preferred routes will be advertised to the
peering RAE entities. These routes may be similar from the point of view of the assumed cost
function but they could differ essentially in other criteria, e.g. the number of disjointed domains.
We argue that the set of preferred routes should be limited to 2-5 routes in order to limit the route
table size. The proposed route ranking algorithm follows three steps:

1. It splits the KRT into sets of routes going towards a given prefix or domain and belonging to
the same COMET CoS. For each set, the algorithm removes routes that are dominated by
any remaining route.

2. The algorithm ranks the routes in each set using the cost function.
3. Finally, the algorithm prepares the subset of preferred routes based on ranking and other

optimisation criteria, like, e.g., load balancing. This step finalises the algorithm.

For route ranking algorithm the following parameters should be configured: K – the number of
parameters, r, a– vectors of values related to reservation, aspiration levels, the identifier of cost
function, N – the number of advertised paths.

4.1 RAE interfaces

The interfaces cover: (1) configuration file, which provides information about domain
configuration, provisioning as well as SLA agreements between peering domains; (2) RAE-to-RAE
interface used to exchange messages between peering RAEs and (3) RAE-to-CME interface, which
is used to provide discovered path to Path Storage component.

4.1.1 Configuration file

The configuration file includes all parameters required for RAE. The configuration file is stored in a
binary file following protobuf encoding. The information included in RAE configuration file covers:

 The number of local AS,

 Local IP address and port number for running TCP listening socket,

 Value of keep-alive timeout,

 Value of reconnection timeout,

 Minimum interval for advertising update messages,

 Limit for the number of preferred routes maintained for single destination prefix,

 IP address and port number for connecting to CME interface,

 Type of route ranking algorithm,

 A list of reservation levels rk for particular parameter k=IPTD, IPLR,

 A list of aspiration levels ak for particular parameter k=IPTD, IPLR,

 A list of peering RAEs:

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 19 of 76
© Copyright 2010, the Members of the COMET

o IP address and port number of the remote RAE,

o AS number of remote RAE,

o Time-to-live value, which should be maintained for the TCP connection,

o List of provisioned QoS parameters for the traffic sent to peering domain:

 Class of Service identifier,

 Metric value for: IPTD, IPLR, and BW for a single content consumption.

 A list of local prefixes corresponding to local access networks:

o IP address and a prefix length

 A list of provisioning information for intra-domain part

o Source defines the origin of traffic. It can be either a local prefix or a peering.

o Sink defines the destination of traffic. It can be either a local prefix or a peering.

o List of provisioned QoS parameters for the traffic sent from source to sink:

 Class of Service identifier,

 Metric value for: IPTD, IPLR, and BW for single content consumption.

Note that in commercial deployment of COMET, this information should be provided by Domain
Management System. The exemplary configuration file is included in Annex A.

4.1.2 RAE to RAE interface

RAEs exchange 4 messages between themselves that are: OPEN, UPDATE, WITHDRAW,
KEEP_ALIVE. The UPDATE, WITHDRAW and KEEP_ALIVE messages are sent by RAE
asynchronously, while the OPEN message requires confirmation from peering RAE. Figure 4
presents sequence of messages exchanged between RAEs.

Figure 4: Sequence of messages exchanged between RAEs

session establishmentseq

updateseq

withdrawseq

RAE A RAE B

1 : open

2 : open

3 : update

4 : withdraw

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 20 of 76
© Copyright 2010, the Members of the COMET

The OPEN message is used to initiate the session between peering RAEs. Once the OPEN message
is received, the RAE responses with its own AS_number. The structure of OPEN message is the
following:

OPEN{

as_number– the AS number of sending RAE

}

The KEEP_ALIVE message is used to keep going session between peering RAEs. Once the
KEEP_ALIVE message is received, the RAE reset the keep_alive timer. The structure of
KEEP_ALIVE message is the following:

KEEP_ALIVE{

}

The UPDATE message is used to advertise: (1) new prefixes, when they appear within domain, (2)
new paths going towards already known prefixes, as well as (3) updates of path’s properties, e.g.
values of QoS parameters after domain re-provisioning. In addition, the UPDATE message may be
also used for implicit path removal. The structure of UPDATE message is the following:

UPDATE{

List of UpdateEntry {…}

}

UpdateEntry {

Prefix {} – this structure defines the network prefix

available through the advertised route. It

includes the IP address and prefix length.

CoS_id – this is identifier of COMET CoS supported on

the advertised route .

List_of_routes {…} – this structure defines the list of

routes going towards advertised prefix.

 }

Route {

List of as number {…} – this structure defines route as

the ordered list of AS numbers,

Metric {…} – this structure defines metric corresponding

to route. This matric includes the following

parameters: IPTD, IPLR, and BW for a single

content consumption. The values of these

parameters correspond to end-to-edge relation.

}

The WITHDRAW message is used to explicitly remove a given prefix or a set of paths which
becomes no longer available. The RAE uses WITHDRAW message in two cases: (1) to remove a
given network prefix. In this case, the source domain sends WITHDRAW message to all peering
domains, or (2) to remove a set of paths belonging to a given branch of destination sink tree. In this
case, the domain at the beginning of the branch sends WITHDRAW message uphill along the
branch.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 21 of 76
© Copyright 2010, the Members of the COMET

Figure 5: Message sequence chart exchanged between RAE and CME

The structure of WITHDRAW message is the following:

WITHDRAW{

List of WithdrawEntry {…}

}

WithdrawEntry {

Prefix {} – this structure defines the network prefix

available through the advertised route. It

includes the IP address and prefix length.

CoS_id – this is identifier of COMET CoS supported on

the advertised route.

List_of_routes {…} – this structure defines the list of

routes going towards given prefix.

 }

Route {

List of AS numbers {…} – this structure defines route as

the ordered list of AS numbers.

}

4.1.3 RAE to CME interface

RAE provides information about routes and local domain provisioning to the Path Storage
component in CME. Figure 5 presents the message sequence diagram.

The RAE sends 6 types of messages that are summarized in Table 5.

4.2 Consideration on RAE deployment

This section provides considerations for deployment of RAEs. The routing awareness process
performed by RAEs is similar to the current inter-domain routing performed by BGP speakers in
the Internet. However, there are some differences which have direct implications in the
deployment. In the current Internet, inter-domain routing and forwarding are coupled in the
Border Routers so that they are in charge of the exchange of inter-domain routes as well as the
packet forwarding. However, in COMET the routing and forwarding processes are decoupled so

CME RAE

1 : send NLRI()

2 : path storage()

3 : response

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 22 of 76
© Copyright 2010, the Members of the COMET

send NLRI Response Expected CME behavior

(RESET) version
number

Remove all entries from the
Path Storage

(KEEP_ALIVE) version
number

Reset the keep_alive timer

(INSERT_PROVISIONING_INFORMATION)

 source (prefix or AS number)

 destination (prefix or AS number)

 CoS_id (name: PR, BTBE, BE)

 QoS parameters (vector of float values)

version
number

Add provisioning
information to the Path
Storage (Type 1 data).

(REMOVE_PROVISIONING_INFORMATION)

 source (prefix or AS number)

 destination (prefix or AS number)

 CoS

version
number

Remove provisioning
information from the Path
Storage (Type 1 data).

(INSERT_PATH_INFORMATION)

 prefix (IP address and length of prefix)

 CoS_id(name: PR, BTBE, BE)

 edge_identifier (AS number)

 Vector of:
o as_path (list of AS numbers)
o Metric {…} - IPTD, IPLR, and BW

for a single content consumption.

version
number

Add path information to the
Path Storage (Type 2 data).

(REMOVE_PATH_INFORMATION)

 prefix (vector of bytes + length of prefix)

 CoS (name: PR, BTBE, BE)

 edge (AS number)

version
number

Remove path information
from Path Storage (Type 2
data).

Table 5: Messages exchanged between RAE and CME

that RAEs are in charge of the routing awareness process (exchange of NLRIs), while CAFEs are in
charge of forwarding. Moreover, since the routing awareness protocol expresses next hop in terms
of next AS and not in terms of next router, only one inter-domain speaker is needed (or two in
order to provide resilience) for the exchange of routing information, whereas in the current
Internet all Border Routers need to participate in the exchange of NLRI with eBGP1. RAEs are
expected to interact with:

 Other RAEs in peering domains to exchange routing information (including QoS path
characteristics and multiple paths) with other RAEs in COMET peering domains.

 CMEs/CRMEs in the same domain, in order to propagate the previous information.

Regarding deployment of RAEs, it can be different depending on the specific approach for content
resolution. In the decoupled approach, the decision process is performed by the client’s CME,
which must be aware of any route changes. Therefore, route changes (updates and withdrawals)

1 In the current Internet, it is not strictly necessary that BRs speak eBGP. Instead, RRs or BGP routers different from BRs

can speak eBGP with other domains. This is done by configuring “ebgp-multihop” field accordingly. However, this is
not a common practice since it makes the configuration difficult and can cause instabilities.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 23 of 76
© Copyright 2010, the Members of the COMET

must be propagated to all CMEs (see Figure 6). On the other hand, not all domains need to deploy
RAEs.

In the coupled approach, where content resolution is performed on a hop by hop basis, the decision
process is performed in each CRME along the resolution path based on the information propagated
during the content publication. In practice, this means that the decision is taken by upper tiers.
Therefore, route changes should not reach all CRMEs, but only those in upper tiers (see Figure 7).
On the other hand, due to the hop-by-hop nature of content resolution, it seems appropriate a
priori that all domains deploy RAEs.

Figure 6: Deployment of RAEs in the decoupled approach

Tier-1

Tier-2

Tier-3

RAE

Routing AwarenessProtocol

COMET route propagation

RAE

RAE

RAE

RAE
RAE

RAE RAE

RAE
RAE

RAE RAE
RAE

RAE

RAE

RAE
RAE

RAE RAE

RAE
RAE

RAE RAE

RAE

RAE

RAE

Tier-1

Tier-2

Tier-3

RAE

Routing AwarenessProtocol

COMET route propagation

RAE

Figure 7: Deployment of RAEs in the coupled approach

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 24 of 76
© Copyright 2010, the Members of the COMET

5 Stateless Content-aware Forwarding

The stateless content delivery assumes that CAFEs maintain only the neighbourhood (local)
information, i.e., how to forward packet to the peering CAFEs. All information about content
delivery path is stored in a COMET header attached to the original packet containing content
payload. The COMET header includes information of the end-to-end path, which allows CAFEs to
forward packets along the selected path. The COMET header is attached and removed by edge
CAFEs located close to the content server and the client, respectively. The path selected during
resolution process is configured in the edge CAFE during the path configuration process [1].

The stateless content delivery follows the source routing principle at the domain level, which allows
for flexible selection of content delivery path for each content request. Furthermore, the proposed
approach is technology-agnostic in the sense that it allows each domain to use different packet
forwarding technologies between peering CAFEs. In our approach, the end-to-end path is made up
by a chain of content delivery path segments between neighbouring CAFEs.

Figure 8 presents the concept of stateless content delivery process. In this example, we assume a
simple network consisting of a client domain, a server domain and two transit domains. The
content delivery path selected during content resolution process goes through domains C-B-A,
which is different than the IP routing path.

In order to deliver content through path C-B-A, the edge CAFE located in domain C intercepts the
data packets generated from the content server and embeds the COMET header into them. It
includes the list of forwarding keys. Each forwarding key determines the next CAFE as well as the
required encapsulation to forward packet to the next CAFE. Note that the forwarding key has only
local meaning within a given CAFE. Consecutively, each CAFE on the content delivery path draws
successive forwarding key from the COMET header and encapsulates the packet following specific
forwarding technology used between CAFEs. In our example, the forwarding key “2” enables
forwarding of data packets from the edge CAFE located in domain C towards the CAFE located in
domain B. Then, this CAFE uses next forwarding key, “3”, to deliver packets to the edge CAFE
located in domain A. Finally, the last CAFE on the list of forwarding keys removes the COMET
header and sends data packet directly to destination.

The proposed approach allows flexibly using any packet forwarding technology and applying
specific packet processing within CAFE. In particular each domain may define a set of locally
specified classes of service and use specific forwarding keys to instruct CAFE how assign packets
into them.

Figure 8: The concept of stateless content forwarding

Content Forwarding Plane

Client

Content

Content server

CAFE

CAFE

Content

Content

1

2

Content32

IP routing path

Selected content

delivery path

Content32Content32

Edge CAFE
Edge CAFE

3

Domain A

Domain B

Domain C

Domain D

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 25 of 76
© Copyright 2010, the Members of the COMET

Length Index List of forwarding keys

1 byte 1 byte Length bytes

Figure 9: Structure of the COMET header

Although content forwarding is based on the stateless principle, the edge CAFE located at the
server side has to classify packets belonging to given content flow and assign them appropriate
values of the COMET header. This information is provided by the CAFE configuration component
during the path configuration process.

Below we present the specification of COMET header and packet processing performed by CAFEs.

5.1 COMET header

The stateless approach uses the COMET header to carry information about content delivery path.
The structure of COMET header is presented in Figure 9.

The COMET header covers following fields:

 Length (1 byte) indicates the length of the forwarding keys list. Allowed values: {0, …, 255}.
Note that length of list field is correlated with the length of content delivery paths.
Typically, we need two CAFEs to cross a domain, so we need 2 bytes per domain. Thus, we
need about 6-10 bytes for typical inter-domain paths.

 Index (1 byte) indicates the active position of in the Key field. Allowed values: {0, …,
Length-1}.

 List of forwarding keys (exactly Length bytes) includes forwarding keys of content delivery
path.

Figure 10 presents mapping of COMET header into 4 basic forwarding technologies that are: IP
over Ethernet, IP over VLAN Ethernet, IP over GRE Ethernet and IP over MPLS Ethernet.

Figure 10: Mapping of COMET header into different forwarding technologies

In case of COMET in IP over (VLAN) Ethernet, the processing of COMET header requires
definition of new value of Ether_type, which invokes processing of COMET header. In our

IP packet

IP packet

IP packet

IP packet

COMET in IP over Ethernet

COMET Header

COMET in IP over VLAN Ethernet

COMET in IP over GRE Ethernet

Q – 4 bytes; QinQ – 8 bytes; QinQinQ – 12 bytes

IPv4 adds 28 bytes, IPv6 adds 48 bytes

COMET in IP over MPLS Ethernet Each MPLS label adds 4 bytes

Ethernet

Destination

Address

Ethernet

Source

Address C
O

M
E

T

0
x
c
c
c
c

Ethernet

Destination

Address

Ethernet

Source

Address V
L

A
N

0
x
8

1
0

0

V
L

A
N

 t
a

g

COMET Header

C
O

M
E

T

0
x
c
c
c
c

Ethernet

Destination

Address

Ethernet

Source

Address 0
x
0

8
0

0

IP header (GRE) GRE header COMET Header

C
O

M
E

T

0
x
c
c
c
c

Ethernet

Destination

Address

Ethernet

Source

Address 0
x
8

8
4

7

COMET Header
MPLS

label

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 26 of 76
© Copyright 2010, the Members of the COMET

prototype we used value 0xcccc, which is not yet assigned by IANA. This value should also be
added after VLAN tag. In case of COMET over GRE Ethernet, the COMET header is added as
payload for GRE (Generic Routing Encapsulation) packet. We should also use COMET specific
value of Ether_type. Otherwise, the sink of the GRE tunnel will assume it is plain IP packet. In case
of COMET in IP over MPLS Ethernet, the COMET header is added as payload for MPLS (Multi-
Protocol Label Switching) frame. The MPLS node, which closes the MPLS tunnel, must be aware
that payload is encapsulated in COMET header.

Note that the COMET header will slightly increase the payload of Ethernet frames over the 1500
bytes. This could be a problem for domains that do not accept the jumbo frames or at least baby
jumbo frames. In such a case, we need to reduce the MTU (Maximum Transmission Unit) at the
server side.

Figure 11 presents the example of COMET header processing in a CAFE. Each CAFE consumes
1 byte of the key from COMET header, i.e., {129}. It uses this fragment of a key as index to lookup
forwarding table, where forwarding behaviour is described, e.g., the output interface and a set of
parameters required for encapsulation. Finally, the Index field must be increased by 1 to point out
on the next key.

Length

3

Index

1

Key[0]

17

Key[1]

129

Key[2]

0

3 octets

Length

3

Index

2

Key[0]

17

Key[1]

129

Key[2]

0

3 octets

CAFE processing

129

Figure 11: COMET header processing

5.2 Packet processing

Each CAFE has the forwarding table T0 (interface, key)→(forwarding rule). It is used to forward
packets to appropriate output interface using specific forwarding technology. The forwarding is
based on the key value included in the COMET header. The details of this mapping are as follows:

 Interface identifies the link that the packet arrived from.

 Key is local identifier (typically one byte), which indexes forwarding table in CAFE. Key
determines forwarding rule, which should be applied to forward packet to next CAFE. Note,
that all keys in the CAFE should form a proper prefix tree for given interface, i.e., a key
cannot be a prefix of any other key. The CAFE should use one of 2 rules for mapping: 1)
longest matching prefix over key or 2) constant length matching over key.

Interface Key Forwarding rule

#1 {0xa1, 0xbb} Send packets via interface #9 using MPLS
label 16

#9 {0xaa} Send packets via interface #1 using Ethernet
frame with destination address
a1:01:02:ff:01:d3

Table 6: Exemplary forwarding table T0

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 27 of 76
© Copyright 2010, the Members of the COMET

 Forwarding rule describes “how to forward packet”. It depends on forwarding technology
used between CAFEs. For each CAFE, forwarding rule ensures that packets reach next
CAFE in proper way.
Note, that information included in forwarding T0 should be provided by the Domain
Management System as a result of the domain provisioning and CAFE configuration. In our
prototype, each CAFE will read this information from configuration file.

Upon receiving packet with COMET header, the CAFE performs following steps:

1. Register the input interface if_in.
2. If Index field is greater than Length field, drop the frame.
3. If Index is equal to Length field, remove the COMET header and send it as IP packet.
4. Use if_in and key pointed by Index to find forwarding rule in table T0.
5. Increase Index to point out on next forwarding key
6. Process the frame accordingly with forwarding rule and send the packet to appropriate

output interface.

The edge CAFE performs additional functions related to data packet interception and mapping
them to the particular content delivery path. The request for installation of the classification rule
requires following parameters:

 Multi-field filter with the following fields:
o IP protocol number: 4 or 6 (mandatory).
o Source address, IPv4 or IPv6 (mandatory).
o Destination address, IPv4 or IPv6 (mandatory).
o Protocol (IPv4) or next header (IPv6): 1 to 255 (mandatory).
o Source port number: 0 to 65535 (optional). Value 0 indicates wildcard matching

(any port number matches).
o Destination port number: 0 to 65535 (optional). Value 0 indicates wildcard

matching (any port number matches).

 Key for COMET header. Up to 255 octets.

 Timeout which limits the validity of the interception rule. Integer indicating number of
seconds.

 Optionally, other information, e.g., session identifier, traffic profile, etc. This information is
used for traffic policing, multicast, etc.

Intercepted and classified packets are prefixed with COMET header containing provided
forwarding Key. Each intercepted packet refreshed the validity of the classification rule. If the rule
validity is not refreshed for Timeout duration, interception rule would be removed. Optionally,
CAFE may report removal of the classification rule to CME.

Optional features

The CAFEs may not use the whole key from COMET delivery header. This field can be used to
propagate other information related with this session, e.g., session identifier assigned by client-side
CME. This session identifier may be used for identification of local multicast tree identifier,
masquerading, etc.

The CAFE also measure the traffic carried by content delivery paths. In particular, it measures
number of bytes and packets transferred through given content delivery path identified by
forwarding keys. This information would be provided to COMET Server and Network Monitoring
(SNME) entity, to support decision maker and path configuration process.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 28 of 76
© Copyright 2010, the Members of the COMET

6 Stateful Content-aware Forwarding

The state-based content delivery process is carried out in a hop-by-hop2 fashion following states
installed within the content-aware forwarding entities (CAFEs) by the content resolution and
mediation entities (CRMEs) during the content resolution process described in D3.2 [1]. Every
domain along the content resolution path will therefore typically contain two states relating to each
content delivery session, one in the ingress CAFE and one in the egress CAFE. In order to avoid
keeping a user waiting after a content request, content is delivered immediately after the resolution
process reaches either the content server or a point en route where the content is already cached.
However, the process of content delivery initiates within each domain a separate background
process of route optimisation, which aims to improve the route taken by the content from the
content server to the client over the basic customer-provider route used in the resolution phase
(see D3.2, §4.5) [1].

In the following sections, the content delivery path configuration step is described, followed by the
specification of both the content delivery and route optimisation processes.

6.1 Content Delivery Entities

The primary entity involved in content delivery is the content-aware forwarding entity (CAFE).
CAFEs are able to natively process content packets according to their IDs.

Figure 12 shows the internal architecture of a CAFE, which consists of the following three logical
components:

Content State Table – stores state information relating to content streams that the CAFE is
currently handling. The basic table structure is given in the next section.

2 ‘Hop’ here refers to CAFE-level hops.

Figure 12: Internal CAFE architecture

CAFF

Content Forwarding Engine

CAFE-CRME Interface

C
A

F
E

-C
A

F
E

 In
te

rfa
c
e

C
A

F
E

-C
A

F
E

 In
te

rfa
c
eContent

Content

State Table

NotifyConfigure

IP Routing Logic

Content

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 29 of 76
© Copyright 2010, the Members of the COMET

Content Forwarding Engine – forwards content it receives from uphill CAFEs to downhill
CAFEs, in accordance with the states contained in the Content State Table.

Content-Aware Forwarding Function (CAFF) – logically interfaces the CAFE with its local
CRME to allow for installation of states and to send notifications of new content flows.

Communication between CAFE components and external entities is carried out over two main
interface types. The CRME-CAFE interface connects the CAFE with its local CRME to allow it to
send Notify messages and receive Configure messages. The CAFE-CAFE/Router interface connects
the CAFE to its neighbouring CAFEs, both within its domain and within neighbouring domains.

6.2 Content Delivery Path Configuration during Content Resolution

According to our design, content delivery paths are enforced in a receiver-driven multicast manner
that needs state maintenance based on content identifiers. As described in D3.2 [1], content
consumption requests from clients are resolved through a sequence of content resolution and
mediation entities (CRMEs) residing in individual domains according to either the business
relationships between ISPs (in wildcard and filtering modes) or the BGP reachability information
on the scoped source prefix (in scoping mode). In both cases, once a CRME has passed the content
consumption request to its next hop counterpart in the neighbouring domain, its content
mediation function (CMF) configures the local content aware forwarding entities (CAFEs) that will
be involved in the delivery of content flows back from the potential server. Specifically, as shown
in Figure 13, once a CRME receives a content consumption request from its counterpart in the
previous hop domain and forwards it towards the next-hop CRME, it sends a Configure message
to both the local egress and ingress border CAFEs3 connecting the two neighbouring domains,
triggering them to install the appropriate content state within their content state tables4. In case of
failed content resolution, the content states installed in CAFEs can be either left to eventually time-
out, or explicitly torn down by the CRME upon return of an error message. It is worth mentioning

3 The determination of ingress/egress CAFEs for each content consumption request is based purely on the BGP

reachability information [12].

4 Within each domain, the communication between the non-physically connected ingress and egress CAFEs can be

achieved either by establishing intra-domain tunnels that traverse non-content-aware core IP routers, or natively
through the content-centric network routing protocols.

Figure 13: CAFE content state installation process in each domain

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 30 of 76
© Copyright 2010, the Members of the COMET

here that CRMEs do not directly constitute the content delivery paths, therefore the configuration
interaction between the CRME (specifically the content mediation function, CMF) and local
ingress/egress CAFEs is necessary.

To illustrate the content path configuration process carried out during content resolution, consider
the example scenario shown in Figure 14. In this example, content client C1 (attached to domain
2.1/16) is currently consuming a live streaming content X from server S (attached to domain
1.2.1/24). The content delivery path traverses a sequence of intermediate domains, and each of the
corresponding ingress/egress CAFEs contains a content state (represented by a star) relating to
that content delivery path. As previously mentioned, such content states are configured by the local
CRMEs (the CMF function) during the content resolution phase. Now, content client C2 (attached
to domain 1.1/16) issues a content consumption request for the same content to its local CRME.
Upon receiving the content consumption request, the local CRME forwards it to its provider
counterpart in domain 1/8 (uphill), as it is not aware of the content source location. It also sends a
Configure message to ingress CAFE 1.1.0.1 to trigger it to install the corresponding content state
pointing towards C2. Meanwhile, since the CRME in domain 1/8 knows (from the ingress CAFE
notification – see §6.4) that content flow X is being injected into the local network via the
originally configured ingress CAFE 1.0.0.2, it updates its outgoing next-hop CAFE list by adding a
new egress 1.0.0.3 leading towards content client C2. As a result, a new branch is established from
CAFE 1.0.0.2 which is responsible for delivering the content back to the new client C2 (shown by
the dashed line), but without any further content resolution process.

According to our design, the basic forwarding state format maintained at each CAFE is shown in
Figure 15. The content ID entry specifies the identifier of a specific piece of content being delivered,
which is similar to the concept of an IP multicast address. The previous-hop CAFE address entry
indicates the previous-hop CAFE from which the content was forwarded. This can be either an

1/8

1.1/16
1.2/16

1.2.1/24

Content
Consumer C2

Content server S

S: X

CRME

2/8

Content
Consumer C1

CRME

2.1/16

1.0.0.1

1.0.0.2

1.0.0.3

Consume
(INCLUDE{1.2.0/24}, X)

1.1.0.1 1.2.0.1

CRMECRME CRME

CRME

Peering link

Provider-customer link

Figure 14: Multicast-based content delivery process

Figure 15: Content state table structure within each CAFE

Content ID List of next-hop CAFE addressesPrevious-hop CAFE address

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 31 of 76
© Copyright 2010, the Members of the COMET

ingress CAFE belonging to the same domain (e.g. in Figure 14 the previous-hop CAFE address of
1.0.0.3 for content ID, X is 1.0.0.2, which is effectively the ingress CAFE in the network 1/8 for X),
or an egress CAFE belonging to the previous hop domain (e.g. in the same figure, the previous-hop
CAFE address of 1.0.0.2 for content ID, X is 1.2.0.1 which is the egress CAFE in the network 1.2/16
for X). The previous-hop CAFE address entry is required here to ensure that content is received
from the expected neighbouring CAFE, in a manner similar to the reverse path forwarding
(RPF) [13] in IP multicast. Finally, the entry, List of next-hop CAFE addresses indicates the
sequence of next hop CAFEs to which the local CAFE should send the content. For instance, for
content X, the list of next-hop CAFEs maintained by 1.0.0.2 include 1.0.0.1 and 1.0.0.3 leading
towards specific downstream content consumers. A next-hop CAFE can be either a (egress) CAFE
within the same domain or a (ingress) CAFE belonging to the next-hop domain.

6.3 Content forwarding

Once states have been installed in all CAFEs along the content delivery path, the content server, or
any cache en route will forward the requested content to the content client. Figure 16 shows the
content delivery process that takes place after the resolution phase. Once the content consumption
request reaches the content server or any intermediate node that contains the requested content in
its cache, the content is forwarded to the ingress CAFE of the next-hop domain towards the client.
This CAFE will then read the ID of the content it has received and look up in its content state table
the next egress CAFE hop(s) within its domain to which to forward the content. When the egress
CAFE(s) have received the content, it will carry out the same procedure as the ingress CAFE and
forward the content to the ingress CAFE(s) of the neighbouring domain(s). Meanwhile, the ingress
CAFE will also look up in its active session table to check if it has informed its local CRME that it
has received the content that was requested. This is primarily done for the purpose of route
optimisation, which is described in the following section. The ingress and egress CAFEs in each
domain will carry out the same process, until the content reaches the client.

Since the content forwarding mechanism is state-based, content is forwarded in a similar style to
that of standard IP multicast, but only at the level of individual CAFEs at the edge of each domain.
However, despite this similarity, it is important to note a key difference: in IP multicast it is
individual routers that are responsible for sending a group join request towards the targeted source
based on their own knowledge about the location of the content source (or rendezvous point),
typically following the default IP paths. In our case, individual CAFEs are not responsible for
forwarding the “join request” which is effectively the content consumption request. This is instead
done in the CMP in a much more flexible manner, whereby CRMEs can forward requests according
to specific rules or policies such as business relationship between ISPs, local ISP policies as well as
network conditions. As such there is a vertical interaction between a CRME (in the CMP) and its

Figure 16: Content delivery process.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 32 of 76
© Copyright 2010, the Members of the COMET

local CAFEs (in the CFP) for installing content states.

It is worth mentioning that some additional features will be further developed during the rest
period of the project. These will mainly include:

 Interactions between CAFEs at the network edge and legacy IP routers at the core. Although
using tunnelling is an obvious option, we will also explore more native approaches without
necessarily involving content packets encapsulation.

 Quality of Service (QoS) support –how content flows requiring different levels of treatments

can be gracefully delivered with different paths capabilities and how this will have an

impact on the content delivery mechanisms in the CFP.

6.4 Inter-domain Content Delivery Route Optimisation

The proposed content delivery operation is also supported by a route optimisation technique that
allows paths to be switched from provider routes to potential peering routes, or from a longer
content delivery path with large number of AS hops to a shorter one with less hops. A route
optimisation process is initiated by a CRME once it receives a Notify message from an ingress
CAFE and is able to find a more optimal route towards the content server. Figure 17 shows the
basic route optimisation process. For every content chunk that arrives at an ingress CAFE, it will
check from its active session table whether or not it needs to notify its local CRME about the arrival
of a new content stream into the domain. If it does, it will send a Notify message to the CRME
indicating the Content ID, the address of the content server, and the address of the egress CAFE of
the previous domain-hop. The CRME will in turn add an entry to its ActiveSessions table
which it maintains for all Content flows it its domain. It will then look up in its BGP routing table to
check if the next-hop prefix towards the content server contained in the routing table differs from
the address of the prefix of the previous-hop CAFE. If so, the CRME will send a scoped Consume
message to the next-hop CRME along the route-optimised (RO) path, and the resolution process
will continue as before. The original CRME will also update its content ID entry in its content table
with the route-optimised next-hop, so that future requests for the same content will follow the
optimised path during the resolution phase.

To illustrate the route optimisation process in greater detail, consider again the example shown in
Figure 14. Once the CRME (specifically, its CMF) in domain 1.1/16 has noticed that the content flow
with source address belonging to prefix 1.2.1/24 has been injected into the local domain via ingress
CAFE 1.1.0.1 via the provider route, and it also knows from the local BGP routing information that

Figure 17: Route optimisation process

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 33 of 76
© Copyright 2010, the Members of the COMET

there exists a peering route towards the content source, it then issues a new scoping-based content
consumption request: Consume(INCLUDE{1.2.1/24}, X) and sends it to the CRME in domain
1.2/16 in the peering route towards the source. Upon receiving the request, the CRME in 1.2/16 will
update the local CAFE 1.2.0.1 by adding a new outgoing next-hop CAFE 1.1.0.1. As a result, a new
branch via the peering route is established towards content client C2. Once the ingress CAFE
1.1.0.1 has received the content via the interface connecting to 1.2.0.1, it will prune the old branch
via the provider route (the dash line). The purpose of such content delivery path optimisation
across domains is to effectively reduce content traffic within top-tier ISP networks and also
possibly reduce the content delivery cost for customer domains. Of course, this operation is not
necessary if a CRME is allowed to send content consumption requests to its peering counterparts
(in addition to the provider direction) during the resolution phase. However, such an option will
incur unnecessarily higher communication overhead in disseminating content consumption
requests, especially when the peering route does not lead to any source that holds the requested
content.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 34 of 76
© Copyright 2010, the Members of the COMET

7 Content Caching

Naming network objects instead of end-host machines gives the opportunity to identify packets
that travel in the network from the sender to the requesting user. This case was supported in a
number of recent studies, such as [3][14][15]. Building on the concept of named contents and given
that the network transfers named objects instead of data containers (i.e., IP packets), the concept
of buffering in intermediate routers is transformed to in-network caching [3]. That is, if
packets/objects are identified by name they can be cached in the network and forwarded to
subsequent users interested in the same content.

We depart from the Content-Centric Networking (CCN) in-network caching scheme used by Van
Jacobson et al. [3], in which content is wastefully cached at all nodes along a content delivery path,
and propose two novel schemes to support more efficient content caching. The first scheme,
presented in Section 7.1, is a probabilistic in-network caching scheme (ProbCache), which
approximates the caching capacity of a path and then caches contents probabilistically along the
path in order to: i) leave space for other flows on the same path to cache their contents, and ii)
fairly multiplex contents in caches along the path from the server to the client. The second scheme,
presented in Section 7.2, is a centrality-based caching scheme, where content is cached only at
specific high centrality node(s) along the content delivery path. We show that such a scheme
outperforms the standard ubiquitous caching (i.e., where content is cached at each and every node
it traverses along the delivery path).

7.1 Probabilistic In-Network Caching

7.1.1 Background and Motivation

The lifetime of a packet according to the in-network caching scheme, introduced mainly in [3], can
be briefly summarised as follows. Upon a content request, indicated by an Interest packet, the
corresponding server sends the requested content towards the end-user. The routers along the path
from the server to the user are equipped with caches (or Content Stores) and hence, the content is
cached in every router on its way to the requesting user. If subsequently requested, the packet is
retrieved from the closest cache and is sent to the requesting user, instead of having to retrieve it
from the origin server. The specifics of the router structure as well as the details on content packet
naming and routing can be found in [3]. We refer the reader there for further details.

The concept of in-network caching can be supported by any content naming and location-
independent routing scheme, such as [14][16]. Having said this, in this section, we assume that a
naming scheme and therefore, a routing protocol for Interests and Content Packets as well, is
already in place and we focus instead on the properties of in-network caching, independently of
the rest of the architecture. We borrow some terms from [3], such as the Interest packets that are
generated to request and consume Data or Content packets, but we explicitly note that our design is
not necessarily applicable to the CCN architecture proposed in [3] only, but to a wider range of ICN
architectures.

In particular, we, somehow intuitively, observe that caching every content in every router the
content goes through, inline with [3], inherently causes huge caching redundancy. However, given
that the ICN research area is still in its infancy, it is not yet clear whether caching is going to find its
way into deployment in every router, or in a few routers within a domain only [17][18]. We note
that our study herein is still applicable to any in-network caching deployment scenario. We use the
terms ‘router’ and ‘cache’ interchangeably to refer to the cache-enabled routers in the network and
not necessarily to every router as such.

Departing from the above observation, we define a small system of caches and assess the impact of
caching in every router along the path from the server to the client; we envision the ideal caching
policy, based on: i) the caching capability of the system, and ii) the population in terms of distinct
content objects; we design a probabilistic caching algorithm for distributed content placement in a
system of in-network caches (Section 7.1.2). Our goal is to reduce caching redundancy, which

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 35 of 76
© Copyright 2010, the Members of the COMET

further means reduce the number of server hits and therefore, improve the overall performance of
the system, in terms of available resource exploitation. Our results indicate that indeed there is a
lot of space for improvement in the design of in-network caching, given correct content
multiplexing rules are in place (Section 7.1.3).

Our study differs from past research on caching in two main aspects: first, past research focuses on
overlay approaches for web-caching [19][20], or the replacement policies of single caches and the
corresponding single-cache system properties [21][22]. In these cases, network dynamics, in terms
of content multiplexing, are not really affected. Instead, in-network caching of packets, or chunks
instead of whole files (e.g., [23]), raise issues of fair resource allocation and efficient flow
multiplexing [24]. Second, hierarchical caching, e.g., [25][26], which has looked into content
replication in a string of caches, has mainly assumed some form of cooperation and hierarchical
responsibility allocation between (a maximum of three) caching levels. Instead, in the case of in-
network caching, the scene is flatter and all caches share equal caching responsibilities. In this
study, we focus on a distributed, in-network caching environment.

We assume a small system of caches to monitor the behaviour of the Cache Everything - Cache
Everywhere () scheme . Our goal in this Section is to identify the drawbacks of and set the
foundations for the design of more efficient in-network caching algorithms. Our system is depicted
in Figure 18.

Figure 18: Controlled Caching System

According to the scheme, as contents flow through the system, they get cached in every router
they traverse, each time pushing the oldest content out of the cache. Hence, assuming three caches
of four slots each and a system-wide population of four contents in total, stored in server S, then
after four requests, one for each of the four contents, the status of the system will be the one shown
in Figure 18. That is, every cache will have a copy of the whole set of requested contents.

The capacity of our system in this exercise is 12 contents split over three caches. Therefore, the four
contents fit exactly three times in our system of caches, maximising the chances of a cache hit in
the next round of requests. However, if we assume six different contents as the population of our
system, then although the whole content population can fit twice into the system of caches, we
observe in Figure 19 that the fails to accommodate even a single copy of the set of contents.
Instead, after six requests, the two oldest contents will be pushed out of all caches and the four
newer ones will be cached in all three caches (Figure 19). Caching redundancy is clear in this
example and reduces the chances of a cache hit in the next round of requests by 33% (i.e., two out
of six contents have to be retrieved from the main server).

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 36 of 76
© Copyright 2010, the Members of the COMET

(a) Content Population=4 (b) Content Population=6]

Figure 19: Caching Policy

An example of the ideal content placement is shown in Figure 20. We have studied and modelled
the behaviour of in [3] and argue that in-network cache management has to take into account
the approximate capacity of the system of caches and the estimated population of contents that
pass through the system per unit time in order to: 1) cache the corresponding number of copies
for each content that travels through the system, and 2) cache content in a fair manner,
depending on the resources available in the path. We attack the problem of cache placement from
a probabilistic point of view. We deal with issue number 1) above in Section 7.1.2.1 and with issue
number 2) in Section 7.1.2.2.

Figure 20: Ideal Caching

7.1.2 Building ProbCache

We approach the problem of content distribution within a system of caches from the system
capacity point of view. In particular, each router calculates the distance from the server and the
end-user respectively, based on which it indirectly approximates the number of copies of this
content that the system can accommodate (Section 7.1.2.1). Based on this indication and on the
distance from the requesting user, each router probabilistically caches contents as they travel
along the path (Section 7.1.2.2). Our Model Notation is given in Table 7.

Symbol Meaning

 Number of Caches on the path

 Number of Caching Slots in Cache i

 Content Catalog/Population in the Path

TSI, x
Time Since Inception (Header field - Interest Packet):
Hop-Distance from Client, Value range: 1 to

TSB, y
Time Since Birth (Header field - Content Packet):
Hop-Distance from Server, Value range: 1 to

Table 7: Model Notation

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 37 of 76
© Copyright 2010, the Members of the COMET

We base our design on the following four facts.

1. The path from the Server to the Client (see Figure 18) comprises of caches, where router

 has available slots. Therefore, the caching capacity of our system of caches is

 .

2. The Server hosts contents5. Therefore, the caching capability of an -long path is

 .

3. Content and Interest packets follow the same route. This is the assumption used in [3], but
a fair assumption in general, given the name-based, location-independent routing assumed
in ICNs.

4. Similarly to the TTL field included in IP packets, our design pre-requisites that an ICN
packet header includes the following two fields (Figure 21): i) Time Since Inception (TSI),
which denotes the number of hops that the Interest packet has travelled on its way from the
client to the server, and ii) Time Since Birth (TSB), which denotes the number of hops the
content has travelled from the server. Routers along the path increase the TSI value of each
Interest packet and the TSB value for each Content packet by one6. Content packets carry
the TSI value seen by the Interest packet on their way back to the user.

Figure 21: CN Packet Layout

7.1.2.1 Estimating the Caching Capability of a Path

We assume the topology of Figure 22. Each router along the path, upon reception of a content
packet, calculates the caching capability of a path, or in other words, the number of times this
packet should be cached in the system, which is reflected in the factor. Consider the two
users shown in Figure 22, five and four hops away from the server, respectively. The total cache
capacity of the system is

 , where for and for .

The calculation of takes place as follows:

 Equation 1

where is the Time Since Inception (TSI) value and is the Time Since Birth (TSB) that the
router sees in the header of the packet (Figure 21). For example, content packets traveling through
router to fulfil in Figure 22 will have and , while contents for ,
 and . The sum in Equation 1 considers the subtract of TSI minus TSB (or) to
account for the remaining number of caches, instead of the total number of caches from the server
to the client. This is because router does not know whether the packet was retrieved from a
previous router (, in this case), or from the original server.

5 This can be translated to the already seen as well as the anticipated traffic that this router serves. We discuss this issue

further later on.

6 In case of a cache hit, the TSI and TSB values are treated as if the cache is the origin server, that is, the TSI value of

the content packet is replaced by that of the Interest packet, while the TSB is set to 1.

x

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 38 of 76
© Copyright 2010, the Members of the COMET

Figure 22: Design Topology

7.1.2.2 Weight-based Caching

We argue that distributed fair caching demands that each user takes into account other users
sharing the same path. Hence, to decide where to cache the number of copies that
indicated, we use the Cache Weight factor:

 Equation 2

where is the TSB value of the packet header and is the TSI value. We note that the TSI value is
fixed during the content packet's journey from the Server to the Client, while the TSB value is
increasing for each router the packet traverses, hence as the packet gets closer to
its destination.

7.1.2.3 ProbCache: Probabilistic In-Network Caching

The ProbCache algorithm proposed herein is the product of the two factors described above. In
particular, upon receiving a content packet, a router performs the following calculation to decide
whether it is going to keep a copy of it in its cache, or will just forward it further to the next router
on the path towards the Client.

 Equation 3

In terms of implementation, we normalise the product of Equation 3 and decide whether to cache
or not based on a random number generator function.

One may argue that the factor inherently favours contents that travel from further away,
over contents from Clients closer to the Server. However, we consider that this is only due to
factors external to our design, i.e., the network topology, and we attempt to counter-balance the
unfairness that this may cause by the Cache Weight factor: the fraction of TSB over TSI, namely the
Cache Weight factor, increases as the content packet gets closer to the user. In turn, this increases
the probability of the content being cached closer to its destination.

This way, we achieve fair cache multiplexing between requests that travel to different destinations
in terms of path length. That is, for example, the client behind in Figure 22, has to share
the caching space available on this path equally with all other clients using the same, or a part of

TimesIn

tCacheWeigh

TimesIn

c

i

yx

i

x

y

R

N

ProbCache

1)(

1==

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 39 of 76
© Copyright 2010, the Members of the COMET

the same path. Therefore, contents for User 1 should be cached inversely proportionally to its
distance from the server. For the content packet of this means that it has higher chances
of being cached in routers or , in order to leave caches for clients travelling
shorter paths to cache their contents. This counterbalances the slightly unfair behaviour of the

 factor described before and is in accordance to our previous findings [27] that contents
tend to be cached for longer towards the edge of the network.

To calculate the factor each router has to make the following two assumptions:

1. value: Given that the scene is very blurry still as to what amount of memory each router
will have, or if backbone routers, for instance, will have bigger caches than edge-network
routers, we make the following simplistic assumption. Each router assumes that all other
routers on the path have the same amount of cache as it has got. Even in a random-size
(i.e., not standardised) cache deployment scenario, this assumption serves our purposes
well. That is, a router with a big cache, compared to the caches along the path, will have
higher probability of caching more contents, while a router with a small cache will
experience the opposite effect (Equation 1), which is a desirable property. Therefore, in
terms of content multiplexing this simplifying assumption alleviates the effect of unknown
cache sizes.

2. value: This value represents the number of different contents that a given -long path has to

accommodate. However, in real terms this is impossible to approximate. Therefore, in our

implementation each router considers that equals the amount of traffic that it delivers (in terms of

Content packets) per unit time. The more the requests a router receives, the less the probability that it

will cache an incoming packet (Eq.1), which is also in agreement with [27]. This is another desirable

system property that achieves efficient content distribution along a path, as we show later in the

results section.

7.1.3 Performance Evaluation

We test our algorithm in a custom-built simulator, where we use Least Recently Used (LRU) caches
as the default option. To the best of our knowledge, this is the first study to question the efficiency
of universal, or ubiquitous caching proposed in [3] and therefore, we implement and evaluate the
performance of ProbCache against . Given that the ultimate goal of the ProbCache algorithm is
to manage caching resources more efficiently, by reducing cache redundancy, the straightforward
metric of interest is the reduction of Server Hits.

The gain from serving user requests from intermediate caches instead of travelling to the origin
server depends on the number of hops that the request travels before it eventually finds what it is
looking for. Clearly, as the number of hops increases, the overall gain decreases. To measure this
gain, we also monitor and present the Hop Reduction Ratio.

We use the topologies shown in Figure 23 and Figure 24 and present two scenaria: the first one is a
simplistic setup over the String Topology to illustrate the operational details of ProbCache. In the
second scenario, we observe the performance of the algorithms over a more realistic 6-Level Tree
Topology. In both topologies, Node 1 is the server node.

Figure 23: 10-Hop String Topology

TimesIn

TimesIn

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 40 of 76
© Copyright 2010, the Members of the COMET

Figure 24: 6-Level Tree Topology

7.1.3.1 Scenario 1: Efficient Distributed Content Placement

We use the String Topology of Figure 23. Clients are connected to all nodes along the path, with the
longest path from the server being ten hops (i.e., clients connected to node 11). The goal of this
scenario is to show how requests coming from users connected at different points along the path
are multiplexed in terms of cache resource allocation.

We generate 60,000 requests in total; individual contents are requested according to a Zipf
distribution, where the value of the exponent characterising the distribution, a, is 0.9 [35]; the
number of distinct contents that the server hosts (that is, the content catalog) is 300 and requests
arrive according to a Poisson distribution. In Figure 25 (a), we plot the number of server hits for
the whole experiment and repeat the experiment for different Storage to Traffic ratios per router.
We achieve this by increasing the cache capacity, , of intermediate routers. In terms of server
hits, we observe a difference of 15-20%, on average, and the difference can go up to 26.6% for very
small caches, always in favour of ProbCache.

In terms of Hop Reduction gains, we observe in Figure 25 (b) that the performance gain is in the
order of 5-12%. Although this may sound as a marginal gain, we argue that in a topology where the
longest path is ten hops, which is the case in our experiment, but very frequently the case in
Internet topologies as well, this translates to a hop-reduction of one to two hops. Considering that
requests may come from as close as one or two hops away from the Server (i.e., requests from users
attached to nodes 2 or 3 in Figure 23), we consider this to be a substantial performance gain and
continue to explore the operational details of ProbCache that lead to this result.

 (a) Server Hit Saving (b) Hop Reduction Ratio

Figure 25: General Metrics for Scenario 1

We randomly choose a request from a user connected to the last router of the string topology (),
and plot the two factors of ProbCache, as well as their product, namely the value of the ProbCache
function itself, as the request is travelling from to . The result is shown in Figure 26. We see
that initially the value of the factor is large, but as the request is getting closer to its
destination its value declines. This follows precisely our modelling goal in designing ,
which is to approximate the number of copies of a specific content that the path can accommodate.

N

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
e

rv
e

r
H

it
s

Cache to Catalog Size Ratio

CE^2
ProbCache

 0.15

 0.3

 0.45

 0.6

 0.75

 0.9

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

H
o

p
 R

e
d

u
c
ti
o

n

Cache to Catalog Size Ratio

CE^2
ProbCache

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 41 of 76
© Copyright 2010, the Members of the COMET

On the other hand, the factor increases as the content packet gets closer to the user
(or in other words as the TSB value moves towards the TSI one).

The dots in Figure 26 (a) represent the routers, where the content packet is cached. We monitor the
next two content requests, which come from users connected to routers 4 and 5, respectively. In
Figure 26 (b), we plot the ProbCache function of these two requests and replot the ProbCache of
Figure 26 (a). The dots represent the router where the packet is eventually cached. We observe that
the further away the request comes from, the further away the packet gets cached. This leaves space
for shorter flows (in terms of hop-length) to cache their packets without having to evict other
packets from the caches. We argue that this behaviour is indeed desirable and achieves fair content
multiplexing in path-caches and results in better exploitation of the available cache capacity. We
further elaborate on this behaviour in our next simulation scenario.

 (a) Value Decomposition (b) for three different clients

Figure 26: Function Analysis

7.1.3.2 Scenario 2: Cache Capacity Management

In our last simulation scenario, we use the 6-level tree topology shown in Figure 24, which consists
of 127 nodes in total. Node 1 is the server node, which hosts a total of 500 distinct contents, while
we configure requests to come from the last two levels of the tree, i.e., Nodes 32 to 127, a total of 95
nodes. We consider this to be a more realistic setup, as we assume that individual users are not
connected to backbone network routers, although we report that results do not differ massively in
either case. This time, we run the simulation for longer, generating a total of 100,000 requests, to
allow enough time for the system to reach a steady-state. The exponent of the Zipf distribution of
requests is now set to 1,2 to represent more realistic reflection of Internet traffic.

In Figure 27 (a), we present the performance difference of ProbCache against in terms of
Server Hits, while in Figure 27 (b) we present the performance difference in terms of Hop
Reduction. The Server Hits performance difference is slightly smaller than in the previous scenario
and balances around a reduction of approximately 12-15% (12,000-15,000 Server Hits less for
ProbCache).

The Hop Reduction difference is smaller too in this scenario (roughly 8-10%), due to the fact that
in this topology the longest possible path is six hops, compared to the previous longer string
topology. However, considering the operational properties of , which inherently caches content
as close to the end-user as possible, we consider that even this small performance difference
unveils better exploitation of network (storage in this case) resources. To prove this claim further,
we plot in Figure 28 the average number of: i) Cache Hits, in Figure 28 (a); ii) Received Requests,
in Figure 28 (b) and; iii) Cache Drops, in Figure 28 (c), per each level of the tree topology, where
the smaller the tree level, the closer is this level to the server.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4 5 6 7 8 9 10 11

F
u

n
c
ti
o

n
 V

a
lu

e

Hop Number

Cache Weight
TimesIn

ProbCache

 0

 0.5

 1

 1.5

 2

 2 3 4 5 6 7 8 9 10 11

P
ro

b
C

a
c
h

e
 V

a
lu

e

Hop Number

Client 4 Client 6 Client 11

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 42 of 76
© Copyright 2010, the Members of the COMET

 (a) Server Hit Saving (b) Hop Reduction Ratio

Figure 27: General Metrics of Scenario 2

We observe disproportionate differences between the number of Cache Hits for the different levels
of the tree topology (Figure 28 (a)) and the corresponding numbers of requests they receive (Figure
28 (b)). We argue that this difference in Cache Hits and Received Requests owes to the efficient
resource management of the ProbCache algorithm, which results in contents staying in the cache
for longer. To prove our claims, we plot in Figure 28 (c) the average number of Drops per tree-level.
The huge difference in terms of drops validates our claim that although the number of cache hits
per se between the two algorithms is not extremely big (although the 15-33% difference is still a
substantial figure), the difference in terms of traffic flow in the network is striking.

 (a) Average Cache Hits (b) Average Received Requests

 (c) Average Cache Drops

Figure 28: Cache Behaviour Monitoring per Tree-Level

We argue that these are the properties of in-network caching that the research community needs
to investigate further, in order to make the most out of this inherent capability of ICNs.

7.1.4 Related Work

Work in the field of ICNs has spread across several directions recently, from service-oriented
extensions to the CCN architecture [28] and caching overlays [29][30], to new information-centric
architectures [31] and pub/sub approaches to ICNs [32] and further to feasibility studies from a
hardware perspective [17][18], the implications of in-network caching to the overall energy
consumption of the network [33] and the fairness of an in-network caching-enabled Internet [34].

A number of recent studies focused specifically on the properties of a network with in-network
caches: for example, in [35] the authors provide a comprehensive performance evaluation of in-
network caching taking into account several parameters, such as the content request distribution,

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.05 0.1 0.15 0.2 0.25

S
e

rv
e

r
H

it
s

Cache to Catalog Size Ratio

CE^2
ProbCache

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.05 0.1 0.15 0.2 0.25

H
o

p
 R

e
d

u
c
ti
o

n

Cache to Catalog Size Ratio

CE^2
ProbCache

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5

R
e

q
u

e
s
ts

Tree Level

ProbCache
CE^2

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5

C
a

c
h

e
 D

ro
p

s

Tree Level

ProbCache
CE^2

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 43 of 76
© Copyright 2010, the Members of the COMET

the content catalog size, the size of caches and the cache replacement policies. They conclude that
content popularity is (by far) the most important parameter of all. In [36], the authors investigate
service differentiation techniques for information-centric networks. Among other findings, they
conclude that as content popularity increases, so does the number of cache hits at leaf routers,
which is in line with our previous modelling study in [27]. Other modelling studies of the ICN
caching property include [37] and [38].

7.2 Centrality-based In-network Caching

In this section, we detail a centrality-based in-network caching mechanism that seeks to improve
the overall content delivery performance in COMET. We compare our approach with Van
Jacobson’s CCN approach [3].

We first introduce the background of the in-network caching building block in the context of ICN.
Next, we detail a solution scheme that can exploit specific features of a network topology.

7.2.1 Background and Motivation

The ICN concept has gained wide attention in both the research community and the industry. It
breaks the current end-to-end resource sharing model. In ICN, content names are decoupled from
their host addresses, effectively separating the role of identifier and locator as opposed to the
current IP addresses which are used for both purposes. Naming content directly enables the
exploitation of in-network caching since the content can now be accessed in an application-
independent manner. In fact, one of the main building blocks in ICN that makes it an attractive
choice for next generation Internet is the pervasive in-network caching capability.

In the literature, all ICN-related proposals by default include this capability. The most explicit of
them is the Networking Named Content (NNC) proposal by Van Jacobson [3] where it was
proposed that content chunk be cached in each and every router it traverses along the content
delivery path with each router applying the least recently used (LRU) cache eviction policy. Such
caching strategy ensures quick diffusion of content across network and in the area of caching in
general, seems to be the default strategy (i.e., caching in all intermediate nodes on the delivery
path).

We argue that such caching strategy is unnecessarily costly and sub-optimal and study an
alternative in-network caching strategy for enhancing the overall content delivery performance in
COMET. In the caching-related literature (not specific to ICN), some authors have already
questioned this conservative “cache-all” strategy [39][40][41]. We propose a caching algorithm
based on the concept of centrality derived from the area of social network analysis [42] where only
selected nodes in the content delivery path cache the content chunk with the rationale that some
nodes have higher probability of getting a cache hit compared to others and by strategically caching
the content at “better” nodes, we can decrease the cache eviction rate and increase the overall cache
hit performance.

7.2.2 Centrality-based Caching Scheme

The current host-centric Internet requires all content requests to be resolved to the location of host
servers before content can be delivered while in ICNs (e.g., [3], [43]), content are labelled and
identified by their own content names without needing to know the host machine. Thus, in ICNs, a
content request can be satisfied by any matching content regardless of its location (i.e., a cached
content can serve a request). In [3], this feature of ICNs is exploited by caching every content
chunk that passes a router with the assumption that routers are equipped with (large) cache stores.
With this approach, content would disperse into cache store across a network (or domains) in a fast
way and the cache stores would update frequently following the LRU policy. For the rest of the
section, we refer this as “NNC-LRU” as the benchmark for performance comparison.

In caching problems, there are two main aspects of investigation. First is the question on where to
cache and second is how to cache. The first question relates to the location of caching (e.g., specific

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 44 of 76
© Copyright 2010, the Members of the COMET

surrogate server, networked caches etc.) while the second question relates to how cached content is
managed (e.g., how to replace a cached content when the cache is full). In this section, we focus on
the first question.

We propose a new caching algorithm based on the concept of betweenness centrality [42] which
measures the number of times a specific node occurs on the shortest paths between all pairs of
nodes in a network topology. The idea is that if a node lies in the path of many shortest paths, then
it is more likely to get a cache hit.

For a topology G=(V, E) with V vertices and E edges, the betweenness centrality, of node v is
computed as follows.

 .

where is the number of shortest paths from s to t and is the number of shortest paths
from s to t that pass through a node v.

Each node in a topology thus has its own betweenness centrality value. When a content client
initiates a content delivery, the initiation message (e.g., Consume) will record the node with the
highest centrality value. When the content is delivered, it will be cached at the recorded node along
the delivery path. In case of more than one node has the same highest centrality value, all of them
will cache the content.

The same LRU cache eviction policy is assumed at each node. Hereafter, this caching strategy is
referred to as “Betweenness-LRU”. Consume requests for different content are generated based on
Zipf-distribution as follows:

where is the total population of content unit in the network (i.e., the unit can be the whole of a

content, a content chunk or a content packet), represents the most popular content unit and

the possibility for a request for the content unit is

 with being the popularity factor. The sum

of the possibility of all content equals one.

We show a preliminary comparison of the two caching strategies in a 7-node string topology where
all content are hosted at one end of the topology while content requests can originate from any of
the other nodes. The content request arrival process for content unit , , follows the
Poisson process with mean rate,

 .

We measure the performance by the cumulative ratio on hops saved from each request with in-
network caching i.e.,

where is the number of hops from the content consumer to the content server which hosts the
requested content and is the number of hops from the content consumer to the first hop where
the requested content is cached. If no matching cache is found along the path to the server, then
 . In a non-caching system, then . Better performance (i.e., higher hop reduction) is
signified by smaller ratio.

The comparison result is shown in Figure 29 which shows our Betweenness-LRU performs better
than the NNC-LRU algorithm.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 45 of 76
© Copyright 2010, the Members of the COMET

Figure 29: Comparison of NNC-LRU and Betweenness-LRU in string topology

From this simulation, we also see that the number of content request reaching the server (hereafter
referred to as server hit) is reduced. In the NNC case, from the total of 998993 requests, 398846
hit the server; resulting in a server hit reduction ratio, = 0.3992 while with our algorithm, we

achieve

7.2.3 Scalable Realisation of Betweenness Caching Scheme

In the real world, it is usually not practical to assume each node capable of computing its
betweenness centrality since it requires the knowledge of the shortest paths between all pairs of
nodes. Such computation is not scalable. We then further develop an approximation of our caching
strategy based on the ego network betweenness concept [43].

Ego network consists of a central node together with the nodes (one hop neighbors) they are
connected to and all the links among those nodes. The advantage of ego network is the ease for
central node to collect data from the neighbors compared to collecting the data of whole network
and it is simple to calculate the betweenness centrality of the central node within its ego network.
This type of centrality is called ego network betweenness centrality. Although ego network
betweenness only reflects the importance of a node within its ego network, its scalability and ease
of implementation makes it a good alternative for betweenness in large networks. The caching
algorithm using ego network betweenness centrality and LRU cache eviction policy is referred to
Ego-Betweenness-LRU hereafter.

To study the system in a more realistic conditions, we replace the simplistic string topology with a
scale-free topology following the Barabasi-Albert (B-A) power law model [44] which builds a graph
taking into account the preferential attachment property of the Internet topology and resulting in
highly skewed degree distribution. It is also interesting to note that it has been found that the
betweenness distribution of such graph similarly follows power law [45]. Figure 30 shows an
example of a topology generated based on the B-A model with 100 nodes.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 46 of 76
© Copyright 2010, the Members of the COMET

Figure 30: An example of B-A graph with 100 nodes

We show in Figure 31 the hop reduction ratio of the three caching strategies (i.e., NNC-LRU,
Betweenness-LRU and Ego-Betweenness-LRU) with B-A graph. First of all, we see that the
performance of both our centrality-based caching scheme performs better than NNC. However, we
note that at the beginning of the simulation, NNC-LRU performs better (i.e., the ratio drops more
rapidly). This is due to the fact that we have a “cold start” to the system where all cache stores are
empty in all nodes. With NNC caching in all intermediate nodes, it manages to disperse content
more rapidly than our strategies. However, after this initial short “cold start” period where cache
stores are populated with some content, our schemes stably performs better than NNC.

Also, note that the curves for both Betweenness-LRU and Ego-Betweenness-LRU overlap. This
shows that the more scalable approximation of the betweenness metric using the ego-centric
concept achieve similar performance.

7.2.4 Conclusions

We proposed a caching strategy based on the concept of betweenness centrality (i.e., Betweenness-
LRU) and an approximation of it (Ego-Betweenness-LRU) for scalable and distributed realization
and compare their performance against Van Jacobson’s proposal [3] (NNC-LRU). Although NNC-
LRU has the highest content dispersion speed, its caching gain is worse than our two approaches.
Our simulation results on Betweenness-LRU suggest that it has good hop reduction ratio but its
non-scalability and complexity restricts the implementation in large scenarios. Our results show
that Ego-Betweenness-LRU approximates closely the Betweenness-LRU and thus present itself as
the more practical candidate for real networks deployment.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 47 of 76
© Copyright 2010, the Members of the COMET

Figure 31: Performance comparison of NNC-LRU, Betweenness-LRU and Ego-
Betweenness-LRU in a power law topology

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 48 of 76
© Copyright 2010, the Members of the COMET

8 Content-centric Mobility Support

In general, ICNs have an inherent ability to support faster handover than current host-centric
mobility protocols. This is due to the fact that ICNs are better able to ‘heal’ changed paths as a
result of mobility, without necessarily having to explicitly inform the end-host or a fixed agent
within the network, since the network is inherently content-aware. Nevertheless, there exists the
potential to further improve handover performance in ICNs to ensure that handover latency is
minimised as much as possible. Whilst previous works on mobility support for ICNs have been
addressed from a system level [39], we propose to tackle the problem mainly at the link level, at the
least reliable part of the network: the air interface.

This section lays the foundation for mobility support in COMET by first specifying architectural
extensions to the normal CAFE to facilitate such support. Following this, we turn to the
mechanisms that are being proposed to support content-aware mobility at the link level. Finally,
system-level mobility support is specified for both the intra- and inter-domain cases.

8.1 Content-Aware Mobility Support Entities

Mobility in Comet is supported through the use of mobility-aware CAFEs (mCAFEs) which are
placed at the edge of the access network, and are equipped with functionality to track the motion of
the users it is serving as well as the content they are accessing. Figure 32 shows the proposed
internal architecture of an mCAFE, which consists of a number of logical components in addition
to those inherited from standard CAFEs:

User Management Function (UMF) – As users roam around within the coverage area of a
mobile network, they send to the mCAFE (either periodically or aperiodically) channel quality
information (CQI), as well as information about other nearby mCAFEs that it has detected. This
information is processed and stored by the UMF, and can be used by it to infer the general
direction of the mobile user, and predict users’ likely future locations.

Radio Network Management Function (RNMF) – mCAFEs that neighbour each other may
share information about its current load condition. This information is processed and stored by the
RNMF. The RNMF may also be pre-programmed with information about the mCAFE’s own
coverage area, as well as that of its geographical neighbours. However, it may instead infer the
coverage area dynamically, using information provided to it by the UMF as users hand over
between cells. In such case, the RNMF will have the function of running the inference algorithms.

Figure 32: Internal mCAFE architecture

RNMF

UMF

CAFF

Mobility-Aware Content

Forwarding Engine

mCAFE-CAFE Interface

Radio Interface

CQI

Content

m
C

A
F

E
-C

R
M

E
 In

te
rfa

c
e

Configure

In
te

r-m
C

A
F

E
 In

te
rfa

c
e

Neighbouring

mCAFE Load

Information

Content

Content

State Table

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 49 of 76
© Copyright 2010, the Members of the COMET

Mobility-Aware Content Forwarding Engine – This component uses information stored
within the UMF, RNMF and content state table to make intelligent scheduling decisions that aim to
sustain user satisfaction, particularly during handover when the user is most susceptible to
temporary disconnection from the network.

The mCAFE also inherits the CAFF and Content State Table components from the standard CAFE.
The function of these components are as described in section 6.1, except that the CAFF does not
send Notify messages to its local CRME, as the mCAFE always acts as an egress point.

Communication between mCAFEs and external entities occurs over four main interfaces. The
CRME-mCAFE interface connects mCAFEs with its local CRME, to allow it to be configured with
content-states in response to a Consume message sent to it by a Content Consumer (CC). The
mCAFE-CAFE interface connects is a purely content-plane interface through which content from
the previous-hop CAFE flows towards the CCs. This information is then scheduled to the users by
the mobility-aware content forwarding engine and sent across through the air interface to the CCs.
Finally, the inter-mCAFE interface is that through which the mCAFE communicates with its
neighbouring mCAFEs, exchanging load information between each other.

8.2 Mobility- and Content-Aware Scheduling

Scheduling across the air interface in mobile networks today is typically carried out based on the
broad class of application being consumed (e.g. video, voice, etc.) without regard to the particular
QoS specifications that this specific session requires. Since users close to a base station typically
receive higher throughput compared to users located further away from it, proportionally fair
scheduling algorithms [51] try to compensate for this by increasing the resources allocated to cell-
edge users according to a given proportion. Altering this proportion alters also the balance between
the overall information throughput of the cell, and the degree of user ‘fairness’.

The concept of fairness referred to in existing work on scheduling assumes a rather static view of
the quality of service requirements of users in relation to the content they are consuming, and the
device being used to consume it. For example, mobile users accessing video content are usually
scheduled resources in such a way that results in all those users receiving the same average
information throughput, regardless of both their terminal’s screen resolution and their mobility
characteristics. However, it is reasonable to assume that the resource requirements of a video user
are directly proportional to the resolution of the terminal’s screen, therefore users of large-
resolution devices should expect to have a higher amount of resources provisioned to them than to
those of small-resolution devices. Likewise, mobile users who are about to perform a layer-2 or
layer-3 handover should typically receive greater priority than other mobile users, so as to ensure
that they have buffered sufficient content to carry out the handover without interruption to their
session. This perspective on the concept of fairness essentially redefines its definition from one
based on the amount of radio resources a user is consuming to one based on the amount of content
it is consuming.

As an example of some of the content-aware mobility support mechanisms that are being proposed,
consider the example shown in Figure 33, in which Content Consumers, C1 and C2, are receiving
content from Content Server, S. As C1 moves towards the edge of the coverage of mCAFE, m1 and
into the coverage, m2, the mobility-aware content forwarding engine of m1 will increase the
scheduling priority of that user to ensure that its streaming session does not get interrupted while
is it handing over between mCAFEs. If m1 has information that m2 is currently experiencing high
load, ,m1 will give even higher scheduling priority to C1 so that m2 does not have to begin
scheduling content to C1 immediately once it has handed over, but can instead opportunistically
wait until C2 has moved closer towards the centre of m2’s coverage.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 50 of 76
© Copyright 2010, the Members of the COMET

Again based on Figure 33, Content Consumer, C2, is moving between mCAFEs, m3 and m4,
which belong to different administrative domains. Since m3 is aware that C2 will be performing an
inter-domain handover, it will increase the scheduling priority perhaps more than that given to C1,
since it knows that the handover process will take longer due to the need to carry out content
resolution in the new network. However, m3 will also be aware of the amount of video left to be
streamed to the user, and so it may decide to increase the scheduling priority of the user to such a
degree that allows it to finish buffering the rest of the video before reaching the edge of its
coverage. This will avoid the need to perform content resolution for only the remaining fraction of
the video.

8.3 Handover Mechanisms

Besides the mobility- and content-aware scheduling mechanisms designed to support mobile
COMET users, various handover mechanisms are required to maintain session continuity as users
move between mCAFEs. Such handover mechanisms can be categorised into intra-domain and
inter-domain handovers.

Figure 34 shows the sequence diagram for intra-domain handover. In this scenario, a content client
(CC) is moving between two mCAFEs belonging to the same domain, and all handover signalling is
contained within the same domain to which CC is connected. Initially, CC is receiving content
from its serving (srv) mCAFE. However, as it moves towards the edge of this mCAFE’s coverage, it
will select another mCAFE to which to connect based on the mCAFE Advertisement it receives. CC
will then send a Consume message to the local CRME, indicating the ID of the content it is
accessing, and information about the mCAFE to which it was last connected. This will cause the
CRME to configure in the normal way the ingress CAFE, and the target (tgt) mCAFE which it will
have inferred from the Consume message. However, it will also send a Configure message to
remove the state in mCAFEsrv (if no other CCs are being wireless multicasted the same content)

Figure 33: Example COMET handover scenario

Content

Consumer C1

Content

Server S

Content

Consumer C2

m1

m2
m3 m4

m5
CRME

CAFE

mCAFE

Content

Flow

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 51 of 76
© Copyright 2010, the Members of the COMET

and trigger it to send to mCAFEtgt the CC’s context information, which will contain information
about the current status of the user’s session, and potentially, information about the user’s
handover history to assist in optimising scheduling decisions.

The inter-domain handover scenario, shown in Figure 35, is slightly more complex than the intra-
domain case. The main difference lies in the need for the user context information (containing
information such as handover history and the status of the user’s content session) to be transferred
across domains. Therefore, when the CC issues a Consume message to the target CRME, providing
it with information about the ID of the content it is accessing, together with its previous mCAFE, its
new (target) CRME will send a Context Information Request message to its old (serving) CRME. In
turn, the serving CRME will send a Configure message to mCAFEsrv to tear down the content
state associated with the CC (again, provided that no ongoing consumption for the same content is
present), and trigger it to send the context information of the CC to mCAFEtgt. Thereafter, the
interactions between entities are the same as for the intra-domain case.

Since the request for context information across domains may lead to extended handover latency, it
may also be possible to support a more proactive handover approach, whereby the CC’s serving
domain is able to pre-empt the domain to which the CC is likely to hand over. This will not only
allow the user context information to be transferred to the new domain in advance, but it will also
allow the serving CRME to inform (publish) to the target domain information about the content
being served to the CC. Thus, content paths can be resolved along optimal routes from the outset,
potentially avoiding routes through more congested networks.

Figure 34: Intra-domain handover signalling

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 52 of 76
© Copyright 2010, the Members of the COMET

F
ig

u
re

 3
5

:
In

te
r-

d
o

m
a

in
 h

a
n

d
o

v
er

 s
ig

n
a

ll
in

g

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 53 of 76
© Copyright 2010, the Members of the COMET

9 Congestion-aware Content Traffic Load-balancing

In Section 6 of COMET deliverable D3.2 [2], we presented a number of strategies for choosing the
best server-path tuple to achieve the best possible performance. One of the main metrics we used in
D3.2 was the “shortest path” in terms of the number of AS hops the request (and therefore, the
content) has to travel. We considered that the shortest path is most probably going to be the one
that will provide better performance. However, the potential use of hops in the server selection
process raises the question of whether the number of IP routers, for intra-domain traffic, or the
number of AS domains, for inter-domain traffic, provides a reliable indicator as to the quality of
service a given path is expected to offer.

In order to ascertain both the current nature and the evolution of path hops for Internet traffic,
preliminary studies were conducted on non-anonymised traces of inter-domain traffic provided by
WIDE, the Japanese academic network providing connectivity for all national academic and
research facilities. We are using this data set to get further insight as to whether choosing a path
based on the number of hops is the best choice.

Figure 36: Average number of AS hops to remote host

Figure 36 shows the average number of AS hops traversed by flows over the past five years for
traffic leaving the WIDE network. Additionally, we further refine the results for three different
regional destinations (Beijing, London and California) to verify the suitability of the number of
hops as a metric. By weighting the average by flow we introduce some bias towards destinations
with greater number of flows, which we believe reflect the connections that are mostly likely to gain
from content-centric architectures.

At the inter-domain level, the average AS path length has remained remarkably consistent over the
past five years, in spite of an ever-changing underlying physical network. The number of AS hops
also bears little relation to the distance travelled, or the delay experienced as can be verified in
Figure 37. While Beijing is closer to Tokyo than California, existing infrastructure provides lower
delays towards the latter. Conversely, despite being further both geographically and topologically, a
content server located in London could provide a similar delay to a content server located in Beijing
over many periods.

 0

 1

 2

 3

 4

 5

2006 2007 2008 2009 2010 2011

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
A

S
 h

o
p

s

Date

Destination
All

Beijing
London

California

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 54 of 76
© Copyright 2010, the Members of the COMET

Figure 37: Average RTT to remote host

These preliminary results suggest that by conflating both policy and a measure of performance, AS
hops provide an adequate indicator of neither. For inter-domain traffic, where intrinsic knowledge
of the end-to-end path is unavailable, optimizing content delivery requires a holistic approach that
takes into account not only network characteristics, but also feedback from end-systems on the
perceived path quality. The following section describes the design and evaluation of PREFLEX, a
novel traffic engineering solution that balances traffic in order to minimize loss. Hence, our
observation based on the above set of results (and other extensive sets of experiments that we do
not present here) suggest that a “short path” may not always be the best path as for the quality it is
going to provide. We therefore, design PREFLEX, a novel traffic engineering solution that balances
traffic in order to minimize loss. We argue that minimising loss is an important system property
that has the potential to improve overall performance. The following section describes the design
and evaluation of PREFLEX. Our initial evaluation results show that indeed choosing a server that
sits at the end of a longer path may sometimes be more beneficial in terms of overall network
performance.

9.1 PREFLEX overview

PREFLEX (Path RE-Feedback with Loss EXposure) [52] is an architecture which redraws the
boundaries between transport and network layers in an attempt to make both aware of each other’s
actions. PREFLEX relies on three components:

1. Hosts provide the network with an estimate of loss using LEX (Loss EXposure).
2. Edge networks provide hosts with information on which outgoing path to use through PREF

(Path RE-Feedback). In COMET terms, this functionality is assigned to the CAFE of the
edge-domain to which the user is connected. Since CAFEs are situated at the edge of
domains, the information provided to users by PREF need not travel far, resulting in
significantly reduced traffic overhead.

3. A mechanism which assigns “flowlets" [53] to paths in order to balance loss.

The latter is the focus of this section. In the following sections we will briefly review the first two
components.

9.1.1 Loss Exposure

Loss exposure is a mechanism by which hosts signal transport semantics at the network layer by
marking the IP header, in a similar fashion to re-ECN [54]. This is initially signalled to the closest
CAFE that the user is connected to. If a host does not support LEX, all traffic is unmarked and will
appear to the network as legacy traffic. For LEX-capable traffic, there are three possible
codepoints:

 0

 100

 200

 300

 400

 500

 600

 700

2006 2007 2008 2009 2010 2011

A
v
e

ra
g

e
 R

T
T

 (
m

s
)

Date

Destination
All

Beijing
London

California

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 55 of 76
© Copyright 2010, the Members of the COMET

Codepoint Meaning

Not-LECT Not Loss Exposure Capable Transport

LECT Loss Exposure Capable Transport

LEx Loss Experienced

FNE Feedback Not Established

Table 8: LEX markings

The FNE codepoint is set by the host when feedback on the path has not yet been established, and
therefore there is no congestion control loop. This applies to the first packet of a flow, such as TCP
SYN packets, or the first packet after a long idle time, such as keep-alives. An important distinction
is that FNE marks the beginning of a “flowlet", rather than a flow. We define flowlets as a burst of
packets which the sender does not wish to be reordered. As such, it is the end-hosts decision on
how and when to divide traffic into flowlets. While a flow is a transport association between two
endpoints, a flowlet is a sequence of packets which is expected to follow the same path. As an
example, an IMAP connection may remain open several hours, but is composed of several distinct
flowlets each time a client requests data from the server. Operating on flowlets rather than flows
allows networks to balance traffic at a finer granularity and in a transport agnostic manner.

The remaining two codepoints, LECT and LEx in Table 8, are used to signal path loss. By default,
traffic is marked as being Loss Exposure capable, and for every loss experienced by a host, the
ensuing packet is marked with the Loss Experienced codepoint. In reliable transport protocols such
as TCP this corresponds to marking every retransmitted packet accordingly, but can also be applied
to non-reliable transport protocols with some form of feedback on loss.

9.1.2 Path Re-Feedback

With LEX, hosts provide information on both path loss and flowlet start at the network layer. We
now focus on how edge networks specifically, which are naturally multi-homed, can reflect path
diversity back to hosts.

In PREF (Path RE-Feedback) the network selects a preferred outgoing path for each incoming FNE
packet (Figure 38). Upon receiving the first packet of a flowlet, the host performs a reverse lookup
on the source address (step 1) and selects a path according to the perceived performance (2). The
corresponding CAFE then associates the chosen path identifier to the packet and forwards the
packet toward the host (3).

The treatment of outbound traffic by PREFLEX is illustrated on the rightmost figure. The host,
having received indication of the preferred path, tags all traffic deemed sensitive to reordering with
the given path identifier. As the PREFLEX-aware CAFE receives this marked traffic it updates
statistics associated to path, aggregating loss for each destination prefix (4). It then discards the
path identifier (5) and forwards traffic along the appropriate path (6).

Figure 38: PREFLEX architecture

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 56 of 76
© Copyright 2010, the Members of the COMET

The resulting architecture provides many benefits. The balancing is both transport agnostic and
allows flow state to be kept to a minimum, requiring policing at the edges only if congestion
accountability is required. Additionally, path selection is receiver driven, aligning the stakeholder
who can decide when to issue FNE packets with the stakeholder who benefits the most. The key to
path selection is the information provided by the sender (point 7), which allows the network (i.e.,
the CAFE to which the user is connected) to calculate the percentage of path loss. We assume for
the entirety of this section that each flow follows a single path and that a host does not override the
path selected by its domain’s CAFE, although neither is strictly necessary.

9.2 Balancing congestion

While PREFLEX provides an architecture within which transport and network layers exchange
relevant information, it does not yet define how domains, networks or CAFEs select outgoing
paths. In this section we present a solution for balancing traffic according to expected congestion,
which according to our measurement study above has the potential to work in most cases.

A simplistic means of balancing traffic across links would be to equally split flows amongst paths,
that is

where is the probability of assigning a flow to path of available paths. This approach mimics
equalisation. An alternative approach might be to balance traffic according to the proportion of
traffic it carried over a previous interval.

where is the traffic in bytes over path and . This approach tends to be conservative, as

it prefers paths which obtain higher throughput.

To illustrate the limitations of both approaches in isolation, we present a simple example which
will be further expanded in Section 9.3. Consider a network balancing traffic to a given prefix
between two paths with equal bottleneck capacity . For the duration of the
experiment, a source sends traffic according to the same distribution. At , cross-traffic is
generated towards client through . At , a greater quantity cross-traffic is generated
towards client through . The results for both equalisation and conservative strategies are
shown in Figure 39.

We first investigate the effect of equalisation, which is necessary to ensure all paths are continually
probed. Equalisation alone, however, leads to inefficient use of the network if there is a mismatch
in path capacity, as is clearly visible as congestion arises on either link. Such behaviour arises in
traditional traffic engineering, which resorts to equalising traffic weighted by a local link’s capacity.
Where a bottleneck is remote and distinct however, such behaviour will lead traffic across all links
to be roughly bound by the capacity of the slowest path, as can be seen between and
 where throughput over the first path is dragged down by congestion on a second path.

On the other hand, a conservative approach is more successful in saturating both links, but does so
without correctly balancing loss. More worryingly, a pure conservative approach demonstrates the
wrong dynamics, as highlighted between and . Despite being saturated, the
balancer continues to push more traffic towards path 1 while the second path remains under-
utilized, dropping its throughput further.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 57 of 76
© Copyright 2010, the Members of the COMET

Figure 39: Equalisation (left) and conservative (right) traffic balancing strategies

A third strategy is to balance flows according to expected path loss, according to the equation
derived in Appendix 15.

where is the total number of bytes retransmitted over path . This loss-driven approach is shown
in Figure 40. Predictably for small values of loss the loss-driven approach overreacts and flaps
between either path. While the net effect of these oscillations does not result in significant losses, a
conservative approach lends itself more naturally to situation where loss is too small to provide a
reliable indicator on path quality.

An ideal balancer would use all three modes where appropriate. Equalisation is required for no
prior knowledge of network conditions. Conservative mode is appropriate where no loss is
experienced. Once paths become saturated, the loss-driven mode can balance congestion
appropriately. The final equation as derived in appendix 15.1 uses all three and balances between
modes according to the variance of loss. The results of the final, balanced solution is shown in
Figure 40.

9.3 Evaluation

We evaluate PREFLEX through simulation in ns-3 [55]. Since PREFLEX balances traffic using loss
rather than load, there is a need to emulate the end-to-end behaviour of traffic. This proves more
challenging than analysis of existing traffic engineering proposals which typically only focus on
adjusting load, since we wish to verify the impact of PREFLEX on end-user metrics.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 58 of 76
© Copyright 2010, the Members of the COMET

Figure 40: Loss-driven (left) and balanced (right) traffic balancing

9.3.1 Methodology

For all simulations we will use the topology displayed in Figure 41. The topology links a client
domain to a server domain through paths with equal bottlenecks , and total bandwidth
 . While a domain is represented as a single entity in Figure 41, each domain is composed of
a traffic generator connected to a router. Client generates simultaneous HTTP-like requests (or
“gets") from according to a specified distribution, described at the end of this section. As traffic
flows from to , the router within is responsible for balancing traffic over all available paths.

Figure 41: Simulation topology

Across simulations, as the number of paths increases, total bandwidth and the number of
simultaneous requests is fixed. In this manner we wish to analyze how PREFLEX balances traffic
as the granularity with which it can split traffic becomes coarser.

Since we are interested in evaluating how PREFLEX shifts traffic in response to loss, we introduce
additional “dummy" servers , which are connected to through a single path. We partition the
total simulation time into intervals starting on , in which and have no traffic to .

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 59 of 76
© Copyright 2010, the Members of the COMET

Starting at time , client generates requests to according to the same distribution as used to
server . All requests to end at time . Equation 4 sets the start time for requests to as a

function of total simulation time and number of paths . Likewise, Equation 5 sets the number
of simultaneous requests to as a function of , the total number of requests to , and .

 Equation 4

 Equation 5

Figure 42 illustrates the number of simultaneous gets from to for (used in the example
shown in Figure 41) and . Generating cross-traffic in this manner serves two purposes.
First, so independently of the number of concurrent paths, the maximum load in the
system is . However, as the number of paths increases, the fluctuation in load for each path
becomes smaller, and so we will stress the sensitivity with which PREFLEX balances traffic.
Secondly, the number of requests for each over time is the same. Over timescale , equalisation
appears to be an acceptable strategy, however within each interval we will show it performs poorly
achieve consistent behaviour. This is a fundamental limitation of offline traffic engineering, which
is calculated over very long timescales and is unable to adapt as traffic routinely shifts.

Figure 42: Number of requests from C to cross traffic servers
for (left) and (right)

We now specify the settings common to all simulations, including those previously shown in
Section 9.2. Total simulation time is set to 1200 seconds, while total bandwidth is fixed at
 . The number of requests sent from to is set to . Upon completing, a request is
respawned after an idle period following an exponential distribution with a mean. Transfer size
follows a Weibull distribution with an average value of . These values attempt to reflect traffic
to a single prefix with a file size that mimics the small but bursty nature of web traffic, which does
not lend itself to being balanced by the end-host. PREFLEX is configured with , and
 .

9.3.2 Varying bottleneck distribution

We start by examining the case where all bottlenecks share the same bandwidth, , and
compare PREFLEX to equalisation, which mimics traffic engineering techniques based on hashing
flow tuples and assigning them to a path. The goodput, calculated as the total data transferred to
client by flows completed within , is shown for both equalisation and PREFLEX methods in
Figure 41. While both saturate most available bandwidth, equalisation leads to disproportionate
distribution of goodput amongst competing traffic. As loss is not equalised over all paths, the
amount of goodput achieved by servers differs despite demand being similar.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 60 of 76
© Copyright 2010, the Members of the COMET

Equalisation, even when weighted according to local link capacity, is often prone to remote
bottlenecks. We investigate the effect of differing bottlenecks by repeating previous simulations
with the same total bandwidth , but with set proportionally to in a similar manner to

Equation 5, that is .

Figure 43: Goodput relative to achieved by each server for equal capacity links

Figure 43 shows the goodput as a proportion of total link bandwidth for the case where all links
have equal bandwidth. We vary the number of links , and for each case compare equalisation (as
illustrated in Figure 39 and PREFLEX as the balancing methods used. The bulk of goodput
originates from server , which is the only domain to be connected to all links. If traffic is correctly
balanced, we expect to see servers generate the same amount of goodput.

In this scenario, equalisation can be seen as the optimal static TE solution, yet both approaches
bear similar performance. With no knowledge of topology, link bandwidth or expected traffic
matrices, PREFLEX is able to adequately mimic the performance of the static TE solution for the
case where such an approach is best suited.

Figure 44: Goodput relative to achieved by each server for different capacity links

Where bottleneck bandwidth is unequal however equalisation proves inadequate. Once again
comparing goodput (Figure 44) we highlight two significant shortcomings of equalisation which
PREFLEX overcomes. Firstly, goodput for drops as increases. Unable to realise it is

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 61 of 76
© Copyright 2010, the Members of the COMET

overloading a path, equalisation is reduced to sending traffic over each link at approximately the
same rate as the most congested link. In contrast, PREFLEX detects congestion and adapts
accordingly. Secondly, the incorrect distribution of traffic due to equalisation in distorts the
goodput of others servers. While in PREFLEX goodput from is perfectly balanced, with
equalisation traffic crossing the most congested links are directly affected by another domain’s
inability to distribute its traffic appropriately. It may seem unfair to judge equalisation for cases
where there is a mismatch in link capacity, however this mismatch between link weight and path
capacity arises regularly as operators continue to adjust traffic engineering according to local
conditions, with little thought spared for the impact this may have further downstream.

Figure 45: Mean average flow completion time for equal and differing bottleneck links

This impact is in turn perceived by users, who experience longer flow completion times, as shown
in Figure 45. In the equal bandwidth case the flow completion time is similar for both balancers.
Where bandwidth differs however, PREFLEX outperforms equalisation and maintains a stable
performance when balancing over all six paths. This shows that the algorithm scales well as the
number of available paths increases.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 62 of 76
© Copyright 2010, the Members of the COMET

10 Summary and Conclusions

This document has described the final specifications of protocols and algorithms for the Content
Delivery System of the COMET architecture. It starts from the definition and description of the
general building blocks of the content delivery framework, including the COMET Class of Services
and Routing awareness. Based on these building blocks, two distinct content delivery mechanisms
are specified, namely stateless and stateful approaches. Towards the end, a number of advanced
techniques for content delivery are introduced based on the proposed content delivery framework.
Content caching aims to enhance content delivery efficiency and performance by means of caching
popular content items at intermediate CAFEs along the delivery path, and mobility awareness
caters for supporting flexible content forwarding towards mobile consumers.

Based on the design efforts and the implementation activities, we conclude on the following.

 The COMET CoSs are mapped into appropriate intra-domain network CoSs offered by
particular domains on the end-to-end path. We defined three COMET CoSs that are: (1)
Premium CoS, dedicated for delivering the content with QoS guarantees; (2) Better than
Best Effort CoS (BTBE) delivers content over paths controlled by COMET traffic
engineering algorithms. While BTBE does not introduce any kind of guarantees, it provides
relative differentiation of the service; and (3) Best Effort CoS (BE), which transfers the
content using IP routing paths in the network. Such CoS definition is able to support
flexibly a wide range of content delivery service requirements from heterogeneous
applications.

 Routing awareness offers necessary support for inter-domain content delivery through
an offline process. Compared to the standard BGP protocol, the proposed routing
awareness process is able to support advanced features that enables significantly enhanced
content delivery functionalities at the Internet scale: (1) multi-criteria (QoS) routing, which
allows RAE to build routing paths taking into account the requirements of COMET CoSs
and (2) multipath routing as RAE builds a set of routes going towards a given destination
prefix. On the other hand, implementation issues of realising routing awareness entity
(RAE) within individual domains and its interaction with conventional BGP routing is still
yet to be investigated in the rest of the project.

 In this document, two distinct content forwarding mechanisms have been proposed. The
stateless content delivery approach assumes that CAFEs maintain only the
neighbourhood (local) information, i.e., how to forward packet to the peering CAFEs. All
information about selected content delivery path is stored in a COMET header attached to
the original packet containing content payload. In such a case, the end-to-end content
delivery paths are determined by the head node of the content delivery chain. On the other
hand, the stateful content delivery approach follows the alternative philosophy of
maintaining content states at CAFEs at the edge of individual domains. Such a feature
shares some commonality with traditional multicast paradigms. The establishment of the
content delivery path is coupled with the original content resolution process through the
configuration interaction between each CRME and its local CAFEs in the same domain.
Further routing optimisation is also enabled once the content source has been identified.

An interesting direction for future research is the comparison of the distinct features
between the two approaches at the top level. First of all, the main innovation of stateless
content delivery comes from the source routing principle applied at the domain level, which
allows for flexible selection of content delivery path for each content request. Also it does
not require content states to be maintained at intermediate CAFEs in the end-to-end
delivery chain. Certainly the trade-off is the necessity of embedding explicit path
information (rule) inside content packets as additional overhead. On the other hand, the
stateful approach needs necessary state maintenance at intermediate CAFEs. However, the
good news is that it is able to intrinsically support point-to-multipoint content delivery

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 63 of 76
© Copyright 2010, the Members of the COMET

across domains, while such a feature has not been well supported by the current IP
multicast paradigm. From this point of view, the stateful approach is more suitable for
supporting the delivery of popular content items in the Internet.

 In order to support enhanced content delivery performance, e.g. reduced delay and
bandwidth consumption, content caching has been also investigated as an advanced
feature in the COMET system. In WP4, two distinct new caching schemes have been
investigated from different angles. The ProbCache scheme caches contents probabilistically
and most importantly approximates the capacity of the path and keeps the corresponding
number of copies in the network. This way, it effectively distributes contents as they travel
through the network in a fair manner among participating flows. On the other hand, our
second scheme is a centrality-based in-network caching scheme. Our study on both string
and scale-free topologies suggests that caching content only at specific important nodes (by
the betweenness centrality measure) can effectively achieve better hop reduction ratio while
maintaining similar server hit reduction ratio as compared to the ubiquitous solutions (e.g.,
the CCN approach proposed in [3]). We plan to continue the development and evaluation of
the two approaches for content caching, and we also aim to derive useful policies for
applying different caching schemes in specific application environments for content
delivery.

 We have considered mobility support in the COMET content delivery system. Up until
the time of writing, we have developed some initial technical ideas on how to achieve
seamless content distribution for mobile consumers. We have specified a mobility support
framework for COMET at both the system level in the form of intra- and inter-domain
handover mechanisms, and at the link level in the form of air-interface scheduling
mechanisms that take into account the mobility of the user and the content they are
accessing. The main novelty of our work lies in the scheduling aspect since, to the best of
our knowledge, no research has considered combining both mobility- and content-
awareness in this regard. We plan to continue on this research direction in the rest of the
project and obtain comprehensive results for performance evaluations.

 Last but not least, considering the content traffic dynamicity within each autonomous
domain, we have also developed a new scheme called PREFLEX which uses content packet
marking to estimate and balance loss across multiple paths. It requires no per-flow state or
significant changes at routers, it is computationally simple to implement, and does not
cause packet reordering. Thanks to such an adaptive content traffic control by edge network
elements (CAFEs), optimised traffic engineering performance can be achieved for cost-
efficient content delivery in dynamic environments.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 64 of 76
© Copyright 2010, the Members of the COMET

11 References

[1] COMET Deliverable, “D4.1: Interim Specification of Mechanisms, Protocols and Algorithms
for Enhanced Network Platforms”, February 14th, 2011.

[2] COMET Deliverable, “D3.2: Final Specification of Mechanisms, Protocols and Algorithms for
the Content Mediation System”, November 15th, 2011.

[3] V. Jacobson, D. K. Smetters, James D. Thornton, Michael Plass, Nick Briggs, Rebecca L.

Braynard, “Networking Named Content,” ACM CoNEXT 09, 2009, pp.1-12.

[4] IEEE Std. 802.1Q-2005, Virtual Bridged Local Area Networks, 19 May 2006.

[5] Y. Rekhter, T. Li, and S. Hares, "A Border Gateway Protocol 4 (BGP-4)” Internet Engineering
Task Force (IETF) Request for Comments (RFC), RFC 4271, January 2006.

[6] J. Uttaro et al., “Best Practices for Advertisement of Multiple Paths in BGP”, Internet
Engineering Task Force (IETF), Internet Draft,draft-ietf-idr-add-paths-guidelines-00.txt,
November 2010

[7] J. Babiarz, K. Chang, F. Baker, “Configuration guidelines for DiffServ service classes”,
Internet Engineering Task Force (IETF) Request for Comments (RFC), RFC 4594, 2006

[8] K. Chan, J. Babiarz, F. Baker, “Aggregation of Diffserv Service Classes”, Internet Engineering
Task Force (IETF) Request for Comments (RFC), RFC 5127, 2008

[9] X. Masip-Bruin et al. “The EuQoS System: A solution for QoS Routing in Heterogeneous
Networks”. IEEE Communications Magazine, vol . 45 no 2, February 2007, pp. 96-103.

[10] G. Cheng, N. Ansari, “On selecting the cost function for source routing”, Computer
Communications, vol. 29, issue 17, 2006, Elsavier, pp.3602-3608.

[11] P. Khadivi, S. Samavi, and T. D. Todd, “Multi-constraint QoS routing using a new single
mixed metrics”, J. Netw. Comput. Appl., vol. 31, no. 4, November 2008, pp. 656-676.

[12] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” Internet Engineering
Task Force (IETF) Request for Comments (RFC), RFC 4271, January 2006.

[13] F. Baker, and P. Savola, “Ingress Filtering for Multihomed Networks,” Internet Engineering
Task Force (IETF) Request for Comments (RFC), RFC 3704, March 2004.

[14] T. Koponen, A. Ermolinskiy, M. Chawla, K. Hyun Kim, I. Stoica, B. Chun, and S. Shenker, “A
Data-Oriented (and beyond) Network Architecture,” in SIGCOMM, vol. 37, no. 4, pp. 181–
192, 2007.

[15] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker, “Naming in content-
oriented architectures,” in Proc. ACM SIGCOMM workshop on Information-centric
networking, pp. 1–6, 2011

[16] W. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. Garcia de Blas, J. Ramon Salguero, L.
Liang, S. Spirou, A. Beben and E. Hadjioannou, “CURLING: Content-ubiquitous resolution
and delivery infrastructure for next-generation services,” IEEE Communications Magazine,
vol. 49, no. 3, pp. 112–120, 2011.

[17] D. Perino and M. Varvello, “A reality check for content centric networking,” in Proc. ACM
SIGCOMM workshop on Information-centric networking, 2011, pp. 44–49.

[18] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design and implications,” in
Proc. Re-Architecting the Internet Workshop, ReARCH '10, vol. 9, pp. 1–6.

[19] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like
distributions: Evidence and implications,” in Proc. INFOCOM '99. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies, pp. 126–134, 1999.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 65 of 76
© Copyright 2010, the Members of the COMET

[20] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable wide-area web cache
sharing protocol,” IEEE/ACM Trans. Netw., vol. 8, pp. 281–293, June 2000.

[21] A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO buffer replacement
schemes,” in Proc. ACM SIGMETRICS conference on Measurement and modeling of
computer systems, SIGMETRICS ‘90, pp. 143–152, 1990.

[22] P. R. Jelenkovic, A. Radovanovic, and M. S. Squillante, “Critical sizing of LRU caches with
dependent requests,” Journal of Applied Probability, vol. 43, no. 4, pp. 1013–1027, 2006.

[23] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort content location in cache
networks,” in Proc. INFOCOM 2009, IEEE, pp. 2631–2635, April 2009.

[24] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical web caching systems,” in
Proc. INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 3, pp. 1416–1424, 2001.

[25] N. Fujita, Y. Ishikawa, A. Iwata, and R. Izmailov, “Coarse-grain replica management strategies
for dynamic replication of web contents,” Comput. Netw., vol. 45, no. 1, pp. 19-34, 2004.

[26] S. Srikantaiah, E. Kultursay, T. Zhang, M. Kandemir, M. J. Irwin, and Y. Xie “Morph cache: A
reconfigurable adaptive multi-level cache hierarchy,” High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, pp. 231–242, Feb 2011.

[27] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modelling and Evaluation of
CCN-Caching Trees,” in Proc. IFIP NETWORKING, pp. 78–91, May 2011.

[28] S. Shanbhag, N. Schwan, I. Rimac, and M. Varvello, “SoCCeR: Services over content-centric
routing,” in Proc. ACM SIGCOMM workshop on Information-centric networking, 2011,
pp. 62–67.

[29] K. Katsaros, G. Xylomenos, and G. C. Polyzos, “Multicache: An overlay architecture for
information-centric networking,” Computer Networks, to appear, 2011.

[30] V. Sourlas, G. S. Paschos, P. Mannersalo, P. Flegkas, and L. Tassiulas, “Modeling the
dynamics of caching in content-based publish/subscribe systems,” in ACM SAC, 2011, pp.
478–485.

[31] A. Detti and et al., “CONET: A content centric inter-networking architecture,” in Proc. ACM
SIGCOMM workshop on Information-centric networking, 2011, pp. 50–55.

[32] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan, “COPPS: An efficient
content oriented publish/subscribe system,” in ACM/IEEE ANCS, 2011, pp. 99–110.

[33] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-centric networking,” in
Proc. Energy-Efficient Computing and Networking, 1st International Conference on,
eEnergy ’10, ACM, p. 179–182, 2010.

[34] M. Tortelli and et al., “A fairness analysis of content centric networks,” in Proc. IFIP Int. Conf.
Network of the Future, NoF, Paris, France, Nov. 2011.

[35] D. Rossi and G. Rossini, “Caching performance of content centric-networks under multi-path
routing,” Technical Report, 2011.

[36] G. Carofiglio, V. Gehlen, and D. Perino, “Experimental evaluation of storage management in
content-centric networking,” in IEEE ICC, 2011.

[37] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for general cache
networks,” in IEEE INFOCOM, 2010.

[38] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage sharing performance in
information centric networking,” in Proc. ACM SIGCOMM workshop on Information-centric
networking, 2011, pp. 26–31.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 66 of 76
© Copyright 2010, the Members of the COMET

[39] H. Che, Y. Tung, Z. Wang, “Hierarchical web caching systems: modelling, design and
experimental results,” IEEE Journal on Selected Areas of Communications, vol. 20, no. 7, pp.
1305–1314, Sept 2002.

[40] T. M. Wong, J. Wilkes, “My cache or yours? Making storage more exclusive,” in Proc. USENIX
Annual Technical Conference, pp. 161-175, Monterey, CA, 2002.

[41] N. Laoutaris, H. Che and I. Stavrakakis, “The LCD interconnection of LRU caches and its
analysis,” Performance Evaluation, vol. 63, no. 7, pp. 609–634, July 2006.

[42] L. R. Izquierdo, Robert A. Hanneman, “Introduction to the Formal Analysis of Social

Networks Using Mathematica”, University of California, Riverside.

[43] M.Everett, and S. P. Borgatti, “Ego network betweenness,” Social Networks, vol. 27, no. 1,

pp. 31–38, Jan. 2005.

[44] A. L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286,
no. 5439, pp. 509–512, Oct. 1999.

[45] H. Wang, J. M. Hernandez and P. Van Mieghem, “Betweenness centrality in a weighted
network,” Physical Review E 77, 046105, 2008.

[46] T. Koponen, M. Chawla, B-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker and I. Stoica, ―A
Data-oriented (and Beyond) Network Architecture, in Proc. ACM SIGCOMM ‘07, Kyoto,
Japan, Aug. 2007.

[47] M. D‘Ambrosio et. al., D-6.2 Second NetInf architecture description, 4WARD project
deliverable. Available from: http://www.4ward-project.eu/index.php?s=Deliverables

[48] Y. Huang, and H. Garcia-Molina, “Publish/subscribe in a mobile environment,” Wireless
Networks, vol. 10, no. 6, pp. 643–652, November 2004.

[49] N. Fotiou, D. Trossen, and G. Polyzos, “Illustrating a Publish-Subscribe Internet
Architecture,” Technical Report TR10-002, PSIRP, 2010 [online]. Available:
http://mm.aueb.gr/technicalreports/2010_TR10-002_PSIRP.pdf

[50] J. Lee, D. Kim, M. Jang, and B. Lee, “Proxy-based mobility management scheme in mobile
content centric networking (CCN) environments,” Consumer Electronics (ICCE), 2011 IEEE
International Conference on, pp. 595–596, January 2011.

[51] H. J. Kushner, and P. A. Whiting, “Convergence of proportional-fair sharing algorithms under
general conditions,” Wireless Communications, IEEE Transactions on, vol. 3, no. 4, pp.
1250–1259, July 2004.

[52] Araújo, J.T., Rio, M., Pavlou, G.: A mutualistic resource pooling architecture. Third Workshop
on Re-Architecting the Internet (Re-Arch), Philadelphia (2010)

[53] Sinha, S., Kandula, S., Katabi, D.: Harnessing TCP’s burstiness with flowlet switching. 3rd
ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets) (2004)

[54] Briscoe, B., Jacquet, A., Cairano-Gilfedder, C.D., Salvatori, A., Soppera, A., Koyabe, M.:
Policing congestion response in an internetwork using re-feedback. ACM SIGCOMM
Computer Communication Review 35(4) (2005) 288

[55] Network Simulator 3. http://www.nsnam.org

http://www.nsnam.org/

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 67 of 76
© Copyright 2010, the Members of the COMET

12 Abbreviations

AS Autonomous System

BE Best effort service

BGP Border Gateway Protocol

BTBE Better-than-best-effort service

CAFE Content-Aware Forwarding Entity

CC Content Client

CCN Content-Centric Network

CE2 Cache Everywhere, Cache Everything

COMET COntent Mediator architecture for content-aware nETworks

CoS Class of Service

CQI Channel Quality Information

CRME Content Resolution and Mediation Entity

ECN Explicit Congestion Notification

FNE Feedback Not Established

GRE Generic Routing Encapsulation

ICN Information-Centric Network

IP Internet Protocol

IPLR IP Packet Loss Ratio

IPTD IP Packet Transfer Delay

KRT Known Routes Table

LECT Loss Exposure Capable Transport

LEx Loss Experienced

LEX Loss Exposure

LRU Least Recently Used

mCAFE Enhanced CAFE

NNC Networking Named Content

PR Premium service

PREF Path RE-Feedback

PREFLEX Path RE-Feedback with Loss Exposure

ProbCache Probabilistic In-network Caching

PRT Preferred Routes Table

QoS Quality of Service

RAE Routing Awareness Entity

RNMF Radio Network Management Function

SNME Server and Network Monitoring Entity

STREP Specific Targeted Research Project

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 68 of 76
© Copyright 2010, the Members of the COMET

TCP Transport Control Protocol

UMF User Management Function

VLAN Virtual Local Area Network

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 69 of 76
© Copyright 2010, the Members of the COMET

13 Acknowledgements

This deliverable was made possible due to the large and open help of the WP4 team of the COMET
team within this STREP. Many thanks to all of them.

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 70 of 76
© Copyright 2010, the Members of the COMET

14 Appendix A: Exemplary configuration file for RAE

Configuration for RAE is stored in binary format. In order to prepare binary configuration file one
can use a script prepared in the Python language. Below we show how to prepare this script file for
an exemplary domain depicted on following figure.

AS #11
Access Network
10.203.1.0/24

Access Network
10.203.2.0/24

Border Router
to AS #5

Border Router
to AS #9

RAE #11
10.203.3.1:10001

AS #5

RAE #5
10.5.3.1:10001

AS #9

RAE #9
10.9.3.1:10001

RAE session

RAE session

14.1 Script example

The script should be located in the main RAE folder, e.g., /opt/comet/rae. Otherwise, one should
adapt the sys.path.append() method call.

#!/usr/bin/python

import sys

sys.path.append("build/resources")

import config_pb2

cm = config_pb2.ConfigurationMessage()

#Limit for the number of paths maintained for a single destination prefix.

cm.limit_of_preferred_paths = 3

#Configure information about local AS

cm.local_as_number = 11

cm.local_ip_address = "10.203.3.1"

cm.local_port_number = 10001

#Limit for the intensity of the UPDATE messages exchanged between RAEs

cm.minimum_update_interval = 15

#Provide the listening port of the CME

cm.cme_ip_address = "10.203.3.1"

cm.cme_port_number = 9090

#Create peering to AS #5

peer = cm.peer_table.add()

peer.remote_as_number = 5

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 71 of 76
© Copyright 2010, the Members of the COMET

peer.remote_ip_address = "10.5.3.1"

peer.remote_port_number = 10001

#Set the TTL value that will allow to send IP packets to RAE in AS #5. It should

be the minimum #value allowing for correct operations.

peer.ttl_value = 3

#Describe QoS parameters on the link towards the AS #5 (2 classes).

c = peer.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

c = peer.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 5e-6

c.metric.maximum_delay = 0.005

#Create peering to AS #9

peer = cm.peer_table.add()

peer.remote_as_number = 5

peer.remote_ip_address = "10.9.3.1"

peer.remote_port_number = 10001

#Set the TTL value that will allow to send IP packets to RAE in AS #9. It should

be the minimum #value allowing for correct operations.

peer.ttl_value = 4

#Describe QoS parameters on the link towards the AS #9 (2 classes).

c = peer.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 2e-6

c.metric.maximum_delay = 0.002

c = peer.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 4e-6

c.metric.maximum_delay = 0.010

#Create prefixes for access networks: 10.203.1.0/24 and 10.203.2.0/24.

prefix = cm.prefix_table.add()

prefix.ip_address = "10.203.1.0"

prefix.prefix_length = 24

prefix = cm.prefix_table.add()

prefix.ip_address = "10.203.2.0"

prefix.prefix_length = 24

#Provide provisioning information about the intra-domain part: from prefix

10.203.1.0/24 to #10.203.2.0/24 prefix (2 classes).

prov = cm.provisioning_table.add()

prov.source.prefix.ip_address = "10.203.1.0"

prov.source.prefix.prefix_length = 24

prov.sink.prefix.ip_address = "10.203.2.0"

prov.sink.prefix.prefix_length = 24

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 72 of 76
© Copyright 2010, the Members of the COMET

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from prefix

10.203.1.0/24 to #border router leading to AS #5 (2 classes).

prov = cm.provisioning_table.add()

prov.source.prefix.ip_address = "10.203.1.0"

prov.source.prefix.prefix_length = 24

prov.sink.as_number = 5

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from prefix

10.203.1.0/24 to #border router leading to AS #9 (2 classes).

prov = cm.provisioning_table.add()

prov.source.prefix.ip_address = "10.203.1.0"

prov.source.prefix.prefix_length = 24

prov.sink.as_number = 9

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from prefix

10.203.2.0/24 to #10.203.1.0/24 prefix (2 classes).

prov = cm.provisioning_table.add()

prov.source.prefix.ip_address = "10.203.2.0"

prov.source.prefix.prefix_length = 24

prov.sink.prefix.ip_address = "10.203.1.0"

prov.sink.prefix.prefix_length = 24

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 2e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 2e-6

c.metric.maximum_delay = 0.002

#Provide provisioning information about the intra-domain part: from prefix

10.203.2.0/24 to #border router leading to AS #5 (2 classes).

prov = cm.provisioning_table.add()

prov.source.prefix.ip_address = "10.203.2.0"

prov.source.prefix.prefix_length = 24

prov.sink.as_number = 5

c = prov.class_table.add()

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 73 of 76
© Copyright 2010, the Members of the COMET

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from prefix

10.203.2.0/24 to #border router leading to AS #9 (2 classes).

prov = cm.provisioning_table.add()

prov.source.prefix.ip_address = "10.203.2.0"

prov.source.prefix.prefix_length = 24

prov.sink.as_number = 9

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from border

router connecting AS #5 to prefix 10.203.1.0/24 (2 classes).

prov = cm.provisioning_table.add()

prov.source.as_number = 5

prov.sink.prefix.ip_address = "10.203.1.0"

prov.sink.prefix.prefix_length = 24

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from border

router connecting AS #5 to prefix 10.203.2.0/24 (2 classes).

prov = cm.provisioning_table.add()

prov.source.as_number = 5

prov.sink.prefix.ip_address = "10.203.2.0"

prov.sink.prefix.prefix_length = 24

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from border

router connecting AS #5 to border router leading to AS #9 (2 classes).

prov = cm.provisioning_table.add()

prov.source.as_number = 5

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 74 of 76
© Copyright 2010, the Members of the COMET

prov.sink.as_number = 9

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from border

router connecting AS #9 to prefix 10.203.1.0/24 (2 classes).

prov = cm.provisioning_table.add()

prov.source.as_number = 9

prov.sink.prefix.ip_address = "10.203.1.0"

prov.sink.prefix.prefix_length = 24

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from border

router connecting AS #9 to prefix 10.203.2.0/24 (2 classes).

prov = cm.provisioning_table.add()

prov.source.as_number = 9

prov.sink.prefix.ip_address = "10.203.2.0"

prov.sink.prefix.prefix_length = 24

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

#Provide provisioning information about the intra-domain part: from border

router connecting AS #9 to border router leading to AS #5 (2 classes).

prov = cm.provisioning_table.add()

prov.source.as_number = 9

prov.sink.as_number = 5

c = prov.class_table.add()

c.cos_id = 1

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.0005

c = prov.class_table.add()

c.cos_id = 2

c.metric.loss_ratio = 1e-6

c.metric.maximum_delay = 0.001

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 75 of 76
© Copyright 2010, the Members of the COMET

15 Appendix B: Flow Balancing according to Expected
Path Loss

15.1 Loss balancing

Consider LEX-capable traffic that is explicitly marked as either being retransmitted or non-
retransmitted from a single origin prefix to a single destination prefix, with a number of possible
paths and within a single time period. Let be the number of paths (numbered). Let be
the number of bytes sent down path for the previous time period. Let be the number of marked
as retransmissions down path for the previous time period. Let and . While
does not strictly represent the number of lost bytes, the ratio of should be a good
approximation of the loss rate within period . A starting assumption is that it is desirable to
equalise the proportion of lost bytes on all interfaces – that is make equal for all – and by
doing so loss is balanced.

The loss rate is an unknown function of and the bandwidth of the link. It is,
however, likely that the loss rate is increasing (or at least non-decreasing) with . Similarly, the
loss rate is decreasing (or at least non-increasing) with the unknown . Assume then that whatever
the true function, for a small region around the current values of and then it is locally linear
 where is an unknown constant. Substituting gives

 Equation 6

Now consider the next time period. Use the dash notation for the same quantities in the next time
period. In typical time periods (since, for example, if the next time period on average
had more traffic, the overall amount of traffic would be growing – while this is true in the year-on-
year setting, this effect is negligible in the time scale discussed here). Now

 .
Choose the

 to make all

 (hence all equal) where is some unknown constant.
Therefore

 but if this is still near our locally linear region then

 and

is determined by Equation 6, hence the predicted distribution is

 . Now it is necessary

to calculate C by summing over i.
 and hence

 . This gives the final
answer:

Equation 7

There is, of course, a problem when . Because of the assumption that the traffic is assigned in
inverse proportion to loss rate then a branch with no loss would naturally have all the traffic
assigned to it. To correct this, we increment for each path by one maximum segment size (MSS).

Because only local linearity is assumed then large adjustments of the traffic split are likely to cause
problems. It is also useful to send a small amount of probe traffic down each route even if the loss
rate is high. In the absence of other information (for example when there is no loss) it is useful to
assign traffic according to the current traffic throughput split. Therefore there are three tendencies
to be accounted for, the loss-equalisation tendency from Equation 7, the conservative tendency to
keep the traffic split the same as the throughput split in the previous period and the equalisation
tendency to keep the traffic equally split on all interfaces. Call the traffic split assigned to path i by
each of these schemes , and where E, C and L stand for “equal", “conservative"
and “loss-driven".

Then our final distribution of traffic across all links is:

Seventh Framework STREP No. 248784 D4.2 Final COMET Specifications
Commercial in Confidence

Version 2.0 Page 76 of 76
© Copyright 2010, the Members of the COMET

where the are user set parameters in (0,1) such that . Now and
 where N is the number of interfaces. This gives the equation for the desired flow split

 , which represents the probability with which path i will be assigned to a new flow:

Equation 8: Balanced mode equation

15.2 Balancing between conservative and loss-driven modes

We wish to tune PREFLEX to balance between conservative and loss-driven modes for differing
regimes of loss. Equalisation is required in some measure as every path must attract some traffic if
it is not to fall out of use. If this is not the case, a path with relatively high loss will never be probed
to determine whether it has improved. The remaining two components must be adjusted to be able
to respond adequately to loss while not being overly sensitive to statistically insignificant
fluctuations in loss. We define to replace both and in Equation 8 and adjust between
conservative and loss-driven modes:

As a result, may now vary between [0,1]. A simple but effective value for is to define a
minimum average loss below which we do not react to loss, and react increasingly as the
average loss becomes more significant:

This completes the PREFLEX balancer, as shown in Figure 40. The evolution of for the example
shown in Figure 40 is shown in Figure 46 (left) The value of was set to 0.005.

Figure 46: Parameters (left) and for simulation shown in Figure 40

